South West Highway

 Environmental \& Social Impact Assessment26 February 2009

EXECUTIVE SUMMARY

Background:

The overall goal of the Government's Western Europe to Western China (WE-WC) Corridor development program is to improve transport efficiency and safety, and promote development along one of Kazakhstan's main strategic road transport corridors. Transport and trade efficiency will be improved through provision of better infrastructure and services along the entire corridor to reduce transport costs, and through gradual reform of the entities responsible for all categories of roads. The Bank will finance a major upgrade of road infrastructure for the portion of the Corridor from Shymkent to Aktobe/Kyzylorda oblast border ($1,025 \mathrm{~km}$) (South West Highway) as a Specific Investment Loan. The other cooperating International Financial Institutions (IFIs), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD) and Islamic Development Bank (IDB), involved in supporting development of the corridor will finance other sections of the construction program.

The project will also assist the government to strengthen the capacity of agencies responsible for managing the national road network, and to prepare and implement a road safety and road service improvement action plan that will provide system-wide benefits. The project will serve local travel as well as international transportation of general cargo and other goods produced locally and in the region (Tajikistan, the Kyrgyz Republic and Uzbekistan). Institutional development measures include the introduction of an efficient road management system incorporating modern methods for planning and executing road maintenance, and strengthening the capacity of the Committee for Roads (the Committee) within the Ministry of Transport and Communication (MOTC) to efficiently implement all investments.

The preliminary road design prepared by the MOTC envisaged the widening of the road and the construction of bypasses around some of the towns along the WE-WC Corridor. The Feasibility Studies financed by the government, which included a preliminary environmental assessment report (pre-EA), based on the national laws of Kazakhstan were completed in December 2007. In 2008 the preparation of a Resettlement Policy Framework (RPF) that applies to the entire Corridor, as well as an Environmental Assessment Framework (EAF) for the entire Corridor were accomplished under a separate assignment coordinated by ADB and the World Bank.

Project Description:

The project has five components, of which the first two entail the most relevant environmental and social impacts. The complete description of the project can be found in section 3, as well as in Annex 1 of the Main Report.

Component 1: Upgrade and reconstruction of road sections within Kyzylorda Oblast (excluding the bypass to Kyzylorda). This component will finance the upgrade and reconstruction of road sections in Kyzylorda oblast totalling about 834 km with a design oriented towards increased road safety.

Component 2: Upgrade and reconstruction of road sections within South Kazakhstan Oblast, including bypasses at Kyzylorda and Shymkent cities. It is proposed that the entire alignment between Kyzylorda and Shymkent will be upgraded from 2 lanes to 4 lanes.

Component 3: Project Management Consultants (PMC). The consultant services will assist the Committee with the management of all activities associated with the projects as part of a joint effort
by all IFIs and the Government to ensure efficient and transparent implementation of the WE - WC Corridor program. The PMC will also impart transfer of knowledge to MOTC staff as part of the capacity building effort.

Component 4: Institutional Development. The component comprises consulting services, technical studies, the provision of equipment, and training to strengthen the internal management and operations of the Committee, particularly to improve road sector planning, programming, budgeting, implementation of safeguards mitigations, and to improve the efficiency of road maintenance practices. Technical assistance will be provided for the preparation of a road safety improvement plan and an action plan for the development of road services along the Corridor.

Component 5: This will finance consulting services for supervision of civil works under Components 1 and 2, and will also include review of detailed engineering designs and supervision of the implementation of Environment Management Plans prepared.

Environmental Conditions:

The environmental conditions for the project are described in detail in section 4 as well as Annexes 5-1 to 5-14 of the Main Report. The project area is characterized by arid climate, sparse vegetation, few year-round surface water courses and large areas with naturally hyper-saline soils. Saksaul forests, which are adapted to dry, saline conditions with extreme temperature differences, play an important role in soil stabilization and erosion control but are not found near the project corridor, nor the bypass alignments. The landscape in the northern project sector is very arid, barren, hardly vegetated and prone to wind erosion, dust generation and moving sand dunes. Surface drainage exists mainly seasonally, when flash floods can occur and draining waters can have a high erosion potential. The landscape has a very soft relief with wide valleys and basins, separated by slightly elevated plateaus. Land use is restricted to low density animal grazing in the natural environment (mainly camels, sheep, goats and some cattle). Permanent settlements are extremely sparse. South and east of Zhosaly the climate is less severe and the settlements are more common, usually clustered around former state farms and railroad facilities. The steppe vegetation, dominated by grassland with small patches of forest near rivers and in valleys, is interrupted by large tracts irrigated with water from the Syr Darya River. The area between Turkestan and Shymkent is used extensively for agriculture and horticulture.

In the section between the cities of Shymkent and Aral the surface water resources in the project area are dominated by the Syr Daria river, which flows in a NW direction draining into the Aral Sea. While this river is generally a long distance away from the alignment, the project foresees one new bridge near Kyzylorda as well as the rehabilitation of an existing one near Zhosaly. The drainage network is sparse in perennial natural streams and rivers, there are relatively few tributaries crossed by the alignments, which flow mostly in SW directions towards Syr Daria. In the southern part of Kyzylorda oblast artificial irrigation canals form the major features of the surface drainage network. North of Aral no more perennial natural streams and rivers are found and there are frequent basins and depressions without drainage, where water accumulates in the wet season (spring) and evaporates in summer.

Groundwater resources along the alignment are usually shallow, near surface aquifers in loose sediments such as sand and gravel. Some aquifers are used for irrigation, human and animal consumption, but many are naturally highly saline or already negatively impacted by anthropogenic activities, such as irrigation and intense agriculture. Thus most near surface aquifers are highly mineralized and high in salinity, as well as being impacted by diffuse pollutants from agriculture.

Impacts:

Section 5 of the Main Report deals with environmental impacts and corresponding mitigation measures. The environment along the alignment between Turkestan and the Kyzylorda/Aktobe Oblast border is not sensitive or particularly valuable in terms of biodiversity and ecological significance. Most of the land is arid steppe to semi-desert landscapes with few river crossings, limited wetlands (partly natural, partly irrigated lands) and no forests, sensitive natural habitats nor protected areas directly impacted by road construction. An initial review commissioned by the Government and complemented by this study suggests there are no known sites or structures of cultural significance affected by the planned civil works, although this will be further reviewed during the implementation. Of course there is always a possibility of archaeological "chance finds" during construction works, thus clear procedures will be established jointly with the EMPs for each individual lot.

There are no protected areas directly impacted by the alignment, and only few sensitive natural habitats, rivers, wetlands, forests or protected areas might be indirectly affected. No protected or endangered species will be harmed. The bulk of required land (e.g. for widening the highway or for construction of bypasses, bridges and intersections) is Government owned and is currently unoccupied and not used for economic purposes. A detailed social analysis was conducted by a parallel study and abbreviated resettlement plans (ARPs) prepared for those people affected by the project.

The major part of construction works, except bypasses around settlements and Kyzylorda city, will remain confined within the existing right-of-way. Thus the Project's investments do not pose unprecedented or significant adverse impacts on the environment that cannot be mitigated. Several aspects of the project require enhanced attention: (i) segments of road widening from two to four lanes with potential sections of new alignments close to but outside the existing right-of-way, (ii) construction or rehabilitation of several large bridges, construction of bypasses and large intersections; (iii) potential for induced / indirect impacts such as the production and transport of road construction aggregates and asphalt. These identified environmental issues are concentrated around road sections between Shymkent and Kyzylorda, where most road widening and bridge (re)construction, as well as several bypass sections are planned. Another area of expected increased impacts is the bypass around Kyzylorda, where a new road corridor longer than 20 km will be constructed, as well as a new bridge over the Syr Darya River. At Kyzylorda the alignment will cross through wetland areas (however not formally protected) for several km , which will require enhanced organizational and constructive measures for minimizing local impacts.

Mitigation Measures:

Most impacts by the road rehabilitation and reconstruction project that cannot be completely avoided will be offset or mitigated with readily available environmental management measures which have been developed specifically for the road sector and implemented in many international roads projects. In the case of the road section between Shymkent and Turkestan, the key impacts are anticipated to include the conversion of land, impacts on soil and vegetation, emissions in the form of noise, dust and exhaust gases, associated impacts of borrow pits, construction of haulage roads, storage areas, and camps, temporary impacts from civil construction works, aggregate and asphalt plants, transport and limitations for road use. Measures to address these impacts are addressed in an environmental management plan (EMP, see section 7 of the Main Report) and monitoring plans (section 7 of the Main Report)

The design stage specific EMPs prepared for each road section will be updated as the final designs are prepared by the supervision engineers for the construction bidding documents. The mitigation measures for the project are explained in sections 5.3, 5.4 and 7 of the Main Report, in particularly Table 7-2 (Category A EMP) and Table 7-4 (Category B EMP).

Land acquisition and Resettlement:

Most of the reconstructed road sections will follow the existing alignment, staying within longestablished rights of way that have not been subject to encroachment. The exceptions are bypasses that will be constructed around populated areas. The planned by-passes will require land acquisition, although much of the land is government property. The feasibility study estimated that bypasses would require the demolition of 7 residences and 31 other structures in South Kazakhstan and Kzylorda Oblasts, as well as requiring over 3,000 ha for permanent use, mostly for bypasses and future intersections. Preliminary data from the detailed designs indicate that displacement will be greater than anticipated in the feasibility study, with 152 structures in South Kazakhstan Oblast and 17 structures in Kyzylorda Oblast earmarked for demolition. Most of these are reported to be non-residential structures. The total land for which owners and other users are to be compensated is approximately 360 ha in South Kazakhstan Oblast and 736 ha in Kyzylorda Oblast. Local governments generally have reserved land and the Land Code in Kazakhstan gives preference to land swapping and replacement of buildings, rather than cash compensation.

Additional land will also be required for temporary use during construction. The feasibility study estimated that around 3,600 ha along the entire Corridor would be need for temporary use (staging areas, borrow pits, construction bypasses, and the like), for which private owners will be compensated and the land returned to its original condition after use. llegal or temporary occupation or use of land along the roadway or within the right-of-way is uncommon and therefore the project will incur minimal removal of unauthorized structures from the right-of-way in carrying out the rehabilitation works, with compensation of temporary or illegal land users. Most of the land is reported to be on long term leases issued by the government.

The Borrower prepared a Resettlement Policy Framework prior to Appraisal providing detailed information about procedures and standards set in Kazakhstan for the acquisition of private land and rights-of-way and identifies any additional provisions that will be undertaken to assure compliance with OP 4.12. In parallel to this environmental impact assessment, a Resettlement Action Plan (RAP) has been prepared by consultants hired by the Borrower. The RAP will also be developed and detailed as the design is finalized ahead of the bidding for construction contracts.

Consultations:

Up to this point two stages of public consultations were carried out in communities along the alignment. In October 2008 consultations on the general project concept as well as the TOR for the environmental and social assessments were carried out in Turkestan and Kyzylorda (detailed account in Annex 11). In January 2009 the draft EA report as well as the draft Abbreviated Resettlement Plans were presented in a series of consultations in about 10 communities along the alignment.

Two of the consultations were observed by the Bank team and found to be open, transparent and effective in fostering free and unencumbered expression of opinion by the affected stakeholders. There were significant concerns raised about some of the design features (e.g. Temirlanovka Overpass) and many constructive proposals received from the local population on the presented
design and its environmental and social performance. Such proposals included solutions for traffic safety (especially pedestrian safety), animal crossings, noise protection and community cohesion. The proceedings and results were summarized in a Consultation outcome report (see Annex 12), which is the basis for communicating required design changes from the Committee for Roads to the design engineers responsible for individual lots. Regarding the overpass in Temirlanovka village the Committee for Roads has been requested by the World Bank, that in view of the clear outcome of the consultations, alternative designs must be prepared that allow the alignment to bypass the city and avoid the construction of the overpass.

Implementation Arrangements:

This EA report has been developed in parallel to the stage of detailed engineering designs for the road corridor. However, the engineering design lagged behind the progress of the EA report and has not yet been finalized for all project components and sections. This EA report provides general coverage of the entire corridor and more detailed coverage of those segments for which detailed design has been completed or progressed to an advanced stage. Parts of the EA report thus are still generic and do not describe all environmental mitigation, management and monitoring measures with implementation ready detail. However, the EA report does comprehensively address all required actions for environmental due diligence in the project and provides clear technical and procedural guidance on how to achieve good environmental practice and performance.

This EA report provides a platform, on which subsequent detailed EMPs for the implementation phase (civil works) will be built. These will be contractually required to be produced by the Contractors for each individual lot and will be based on the detailed design which is currently in the process of finalization. TORs for these lot-specific EMPs will be produced by the Borrower for all lots and will be approved by the World Bank. They will become part of the bidding package and every bidder will be required to include the elaboration and implementation of environmental management and monitoring activities into the implementation design and price quotation. The Loan Agreement will require the production of an EMP compliant with international good practice and acceptable to and approved by the World Bank will be a prerequisite to the commencement of job site installations, as well as all temporary and the main works.

Summary Table on Key Impacts and Mitigation Measures

Road Section *	Ecosystem Type / Land Use	Selected Key Impacts	Key Mitigation Measures**
Shymkent to Turkestan	arid to temperate climate; agriculture and horticulture, most densely populated	bypasses of Shymkent City and several villages (incl. Temirlanovka), major bridge rehabilitation and new bride over Arys River, road widening from 2 to 4 lanes	surface water protection and pollution control for Arys River during bridge rehabilitation and / or construction
Turkestan to Kyzylorda	arid climate; steppe vegetation, mixed animal husbandry and agriculture, population density decreasing	short bypasses of several villages, bypass of Turkestan City, bypass of Kyzylorda City including a new bridge over Syrdaria River	protection and restoration of irrigation infrastructure esp. at new bypasses, traffic safety management syistem for Turkestan bypass, surface water protection measures for Syrdaria river crossings at Kyzylorda, protection of wetland habitats in area of Kyzylorda City bypass
Kyzylorda to Aral	arid climate; in South intensive irrigation agriculture mixed with sparse grazing ranges, very saline soils, sparsely populated	short bypasses of several villages, rehabilitation of one bridge crossing of Syrdaria River	surface water protection and pollution control for Syrdaria River during bridge rehabilitation near Jozhaly, control of land conversion and material sourcing for bypasses
Aral to Oblast Border	very arid climate, semi-desert, virtually unpopulated, low intensity animal husbandry decreasing N -wards	road rehabilitation on existing alignment only (no widening or bypasses)	standard mitigation measures only

* See map next page
** Standard mitigation measures not explicitly mentioned are: (a) during construction: minimization of land take, environmental due diligence during construction (dust and emission control, sol conservation, surface and groundwater protection), decommissioning, restoration / re-vegetation of construction sites, permitting and inspection of borrow areas, traffic safety; (b) during operation: drainage and runoff management (settlement and evaporation ponds), safe crossings for pedestrians and livestock, noise control through physical (barriers) and managerial means (speed control), road servicing including litter collection and removal. Details are in the ESIA report in sections 5.4 and 5.4.

CONTENTS

1. INTRODUCTION 1
1.1 Background 1
1.2 Introduction to the Project 2
1.3 Aims and objectives. 3
2. POLICY, LEGAL AND REGULATORY FRAMEWORK 4
2.1 Legal framework 4
2.1.1 The Environmental Code 4
2.1.2 International Cooperation and Treaties 9
2.1.3 Transport Law 10
2.1.4 Air quality standards 11
2.1.5 Water quality legislation and standards 14
2.1.6 Soil standards 18
2.1.7 Noise standards 19
2.1.8 Health and safety during construction and operation 19
2.1.9 Archaeology and cultural heritage 21
2.2 Comparison of National environmental legislation and World Bank standards 22
3. PROJECT DESCRIPTION 30
3.1 Introduction 30
3.1.1 Rehabilitation of existing road 32
3.1.2 General highway upgrade 32
3.1.3 Bypasses, major structures, intersections, river crossings and bridges 32
3.2 Construction phase 33
$3.3 \quad$ Operational phase 35
4. BASELINE DATA 36
4.1 Introduction 36
4.2 Air and Climate 36
4.2.1 Air quality 36
4.2.2 Weather and Climate 36
4.3 Land 40
4.3.1 Topography and landscape 40
4.3.2 Geology and soils 41
4.4 Noise 44
4.5 Hydrology and Hydrogeology 44
4.5.1 Kyzylorda Oblast 45
4.5.2 South Kazakhstan Oblast 46
4.5.3 Groundwater 46
4.5.4 Key Hydrogeological Features with Project Relevance 48
4.6 Ecology and biodiversity 49
4.6.1 Flora 49
4.6.2 Fauna 49
4.7 Archaeology and cultural heritage 54
4.7.1 World Heritage Sites 54
4.7.2 Sauran 55
4.8 Natural hazards 56
4.9 Land use 57
4.9.1 Introduction 57
4.9.2 Settlements and Communities 57
4.9.3 Industry 57
4.9.4 Agriculture 57
4.9.5 Road side vendors 58
4.10 Road network and traffic 58
4.10.1 Road condition 58
4.10.2 Traffic volumes 58
5. ENVIRONMENTAL IMPACTS AND MITIGATION 60
5.1 Background 60
5.2 Methodology 63
5.2.1 Baseline Receptors 63
5.2.2 Project Environmental Aspects 63
5.2.3 Consultations 65
5.3 Impacts and mitigation during Construction 65
5.3.1 Rehabilitation of existing road 66
5.3.2 General highway upgrade 67
5.3.3 Bypasses 74
5.3.4 Major structures and Intersections 76
5.3.5 Major river crossings and bridges 76
5.3.6 Impacts and mitigation analysis 76
5.3.7 Category B 88
5.4 Impacts during Operation 88
5.4.1 Category A 88
5.4.2 Rehabilitation of existing road 88
5.4.3 General highway upgrade 88
5.4.4 Bypasses 89
5.4.5 Major structures and intersections 89
5.4.6 Major river crossings and bridges 89
5.4.7 Category B 94
6. ANALYSIS OF ALTERNATIVES 95
6.1 Introduction 95
6.2 Without project 95
6.3 Bypasses 96
6.4 Temirlanovka Village 97
7. ENVIRONMENTAL MANAGEMENT PLANS 98
7.1 Introduction 98
7.2 Category A 100
7.3 Category B 119
8. REFERENCES 137
Tables
TABLE 1-1 PROJECT LOTS 2
TABLE 2-1 LEGISLATION AND REGULATIONS GOVERNING THE EIA PROCESS AND ENVIRONMENTAL REVIEW 8
TABLE 2-2 AIR QUALITY LEGISLATION 11
TABLE 2-3 WATER QUALITY LEGISLATION 17
TABLE 2-4 COMPARISON OF KAZAKHSTAN EIA AND ENVIRONMENTAL LEGISLATION AND WORLD BANK STANDARDS 24
TABLE 3-1 PROJECT OVERVIEW 30
TABLE 3-2 OVERVIEW OF PROJECT AND ENVIRONMENTAL RISK 34
TABLE 4-1 ESIA INFORMATION SOURCES 36
TABLE 4-2 AVERAGE MONTHLY AND ANNUAL INDICATORS OF THE TEMPERATURE CONDITIONS, ${ }^{\circ} \mathrm{C}$ 37
TABLE 4-3 AVERAGE MONTHLY AND ANNUAL INDICATORS OF HUMIDITY 40
TABLE 5-1 ESIA PROCESSES CONDUCTED TO DATE 62
TABLE 5-2 ENVIRONMENTAL ASPECTS 64
TABLE 5-3 RESULTS OF ARCHAEOLOGICAL EXPERTISE OBTAINED TO DATE 70
TABLE 5-4 POTENTIAL IMPACTS DURING CONSTRUCTION 77
TABLE 5-5 POTENTIAL IMPACTS DURING OPERATION 90
TABLE 7-1 MANAGEMENT PLANS 99
TABLE 7-2 CATEGORY A EMP 101
TABLE 7-3 ENVIRONMENTAL MONITORING PLAN CATEGORY A 111
TABLE 7-4 CATEGORY B EMP 120
TABLE 7-5 ENVIRONMENTAL MONITORING PLAN CATEGORY B 129
Figures in the report
FIGURE 2-1 MINISTRY OF ENVIRONMENTAL PROTECTION STRUCTURE 29
FIGURE 4-1 WIND ROSE SOUTH-KAZAKHSTAN REGION 38
FIGURE 4-2 WIND ROSE KYZYLORDA REGION 39
FIGURE 4-3 NUMBER OF DAYS WITH DUST STORMS 39
FIGURE 4-4 TYPES OF FAUNA 53
FIGURE 4-5 LOWER SECTION OF THE BIG SAURAN KARIZ. AERIAL PHOTO (2006) 56
FIGURE 4-6 PLAN OF PROSPECTIVE SAURAN ARCHAEOLOGICAL RESERVATION AREA 56
FIGURE 4-7 TRUCK TRAFFIC LEVELS 59

Appendices

	Appendix	Number	Description
$\mathbf{1}$	Project description	App 1-1	Project description
		App 1-2	Work plan 1
		App 1-3	Work plan 2
2	Route maps	App 2-1	Overall route current state
		App 2-2-1	Situation Aralsk
		App 2-2-2	Alignment_1240-1398

Appendix	Number	Description
	App 2-2-3	Alignment_1240-1398_2
	App 2-2-4	Alignment_intersections_1240-1398_1
	App 2-2-5	Alignment_intersections_1240-1398_2
	App 2-2-6	Alignment_intersections_1240-1398_3
	App 2-2-7	Alignment_intersections_1240-1398_4
	App 2-2-8	Alignment_intersections_1240-1398_5
	App 2-2-9	Alignment_intersections_1240-1398_6
	App 2-2-10	Aralsk_bypass_1240-1398
	App 2-3	Sketch_alignment_1398-1578
	App 2-4-1	Alignment_1578-1702_1
	App 2-4-2	Alignment_1578-1702_2
	App 2-4-3	Alignment_1578-1702_3
	App 2-4-4	Alignment_1578-1702_4
	App 2-5-1	Situation-1702-1807
	App 2-5-2	Alignment-1702-1807_1
	App 2-5-3	Alignment-1702-1807_2
	App 2-6-1	Situation 1807-1837
	App 2-6-2	Alignment 1807-1837_1
	App 2-6-3	Alignment 1807-1837_2
	App 2-6-4	Alignment 1807-1837_3
	App 2-6-5	Alignment 1807-1837 4
	App 2-7-1	Situation_1917-1980
	App 2-7-2	Alignment_1917-1980_1
	App 2-7-3	Alignment_1917-1980_2
	App 2-7-4	Alignment 1917-1980_3
	App 2-7-5	Alignment_1917-1980_4
	App 2-7-6	Alignment 1917-1980_5
	App 2-7-7	Alignment_1917-1980_6
	App 2-7-8	Alignment_1917-1980 7
	App 2-7-9	Alignment_1917-1980_8
	App 2-8-1	Zhanakorgan bypass

	Appendix	Number	Description
		App 2-8-2	Zhanakorgan bypass
		App 2-8-3	Zhanakorgan bypass
		App 2-8-4	Zhanakorgan bypass
		App 2-9-1	Situation 2057-2135
		App 2-9-2	Alignment 2057-2135
		App 2-9-3	Alignment_2057-2135_2
		App 2-9-4	Alignment_2057-2135_3
		App 2-9-5	lkan_bypass_1
		App 2-9-6	Ikan_bypass_2
		App 2-9-7	Ikan_bypass_3
		App 2-9-8	Intersection_2057-2135
		App 2-9-9	Intersection_2057-2135_2
		App 2-9-10	Intersection_2057-2135_3
		App 2-10-1	Temirlanovka
		App 2-10-2	Aerial photo Temirlanovka
		App 2-10-3	Temirlanovka cross section
3	Land tenure	App 3-1-1	Landuse_plan_ 1240-1398
		App 3-1-2	Landuse_plan_1240-1398_2
		App 3-1-3	Landuse plan_1240-1398_3
		App 3-2-1	Zhanakorgan bypass
		App 3-2-2	Zhanakorgan bypass
		App 3-2-3	Zhanakorgan bypass
		App 3-2-4	Zhanakorgan bypass
		App 3-2-5	Zhanakorgan bypass
4	Environmental approvals	App 4-1	Archaeological expertise
		App 4-2	Ecological_expertise_1240-1398
		App 4-3-1	Scheme 1398-1578
		App 4-3-2	Plan_cemetries
		App 4-3-3	Legend
		App 4-4	Ecological_expertise_1702_1807

	Appendix	Number	Description
		App 4-5-1	Ecological_expertise_2231-674
		App 4-5-2	Archaeological_expertise 2231-674-2135
		App 4-6	Ecological_expertise_2231-2260
5	Environmental feature maps	App 5-1	Agricultural zoning
		App 5-2	Birds migration
		App 5-3	Geology
		App 5-4	Anthropogenic impacts
		App 5-5	Ornithogeographic
		App 5-6	Pastures
		App 5-7	Sand storms
		App 5-8	Soil map
		App 5-9	Groundwater
		App 5-10	Animal husbandry
		App 5-11	Karst processes
		App 5-12	Rare flora species
		App 5-13	Blanket of snow maps
		App 5-14	Protected Areas
6	Project lot details km1980-2057	App 6-1	Project lot details km 1980-2057
		App 6-2-1	Volume_of_materials_1240-1398
		App 6-2-2	Construction_materials 1240-1398
7	Cross sections	App 7-1-1	Cross-section_1240-1398
		App 7-1-2	Cross-section_1240-1398_2
		App 7-1-3	Cross-section_1240-1398_3
		App 7-2-1	Situation__1398-1578
		App 7-2-2	Cross-section_1398-1578
		App 7-2-3	Cross-section_1398-1578_2
		App 7-2-4	Cross-section_1398-1578_3
		App 7-2-5	Cross-section_1398-1578_4
		App 7-3-1	Cross-section_1702-1807_1

	Appendix	Number	Description
		App 7-3-2	Cross-section_1702-1807 2
		App 7-4-1	Cross-section
		App 7-4-2	Cross-section_2
		App 7-4-3	Cross-section 3
		App 7-5-1	Cross section upgrade
		App 7-5-2	Cross section Kazniipi
		App 7-5-3	Bridge section
		App 7-5-4	Reserve section
		App 7-5-5	Reserve and drain cross section
		App 7-5-7	Zhanakorgan railway bridge
		App 7-6	Cross-section_2057 2135
7	Environmental fieldwork	App 8-1	Archaeological information
		App 8-2	Fieldwork sampling
		App 8-3	Archaeology map
9	Material sources	App 9-1	Scheme for borrow pits $1 \mathrm{km1578-1702}$
		App 9-2	Scheme for borrow pits $2 \mathrm{~km} 1837-1917$
		App 9-3	Borrow pits km1650-1702
		App 9-4	Borrow pits km 1837-1917
		App 9-5	Borrow pits km1578-1702
		App 9-6	Borrow pits km1877-1917
		App 9-7	Borrow pit_1702-1807
		App 9-8	Borrow pit_1807-1837
		App 9-9	Borrow pit_1917-1980
10	Report contributors	App 10-1	Report contributors
11	Record of public consultations conducted by GeoDataPlus Phase 1	App 11-1	Public consultations
		App 11-2	Record of Kyzylorda public consultations
		App 11-3	Record of Turkestan public consultations

	Appendix	Number	Description
12	Record of public consultations conducted by GeoDataPlus Phase 2	App 11-4 12-1	Newspaper articles
		Newspaper articles	
		app 12-2	Public consultations 2
		app 12-4	Record of Turkestan public consultations
		Record of Zhanakorgan public consultations	
		app 12-5	Record of Kyzylorda public consultations
13	Archaeological legislation	App 13-1	Record of Temirlanovka public consultations heritage legislation

GLOSSARY

ADB	Asian Development Bank
ARP	Abbreviated Resettlement Plan
CumIA	Cumulative Impact Assessment
DE	Design Engineer
E\&S	Environment and Social
ESIA	Environmental and Social Impact Assessment
FS	Feasibility Study
H\&S	Health \& Safety
HGV	Ministry of Environmental Protection goods vehicle
MEP	Ministry of Transport and Communication
MOTC	Resettlement Action Plan
RAP	Project Affected Person
PAP	Personal Protective Equipment
PPE	Roads Committee (of MOTC)
RC	Sexually transmitted infection
STI	World Bank
WB	

1. INTRODUCTION

1.1 Background

The geographic location and characteristics of Kazakhstan requires efficient and safe transport systems as a priority for development of the economy and for national cohesion. Kazakhstan has substantial transit potential and, in accordance with Transport Strategy 3, the Government plans to improve transit corridors for trade with China, Russia and Europe, which are Kazakhstan's main trading partners in non-oil export sectors.

Road conditions have substantially deteriorated since independence primarily due to underinvestment, resulting in a large backlog of required major rehabilitation and reconstruction. In addition, improving the efficiency of transit through Kazakhstan would require the removal of nonphysical barriers at the borders and along the transit corridors, improving management of road safety, and adequate provision and maintenance of road infrastructure.

In order to achieve the goals defined in the Transport Strategy, the Government now proposes a program of major rehabilitation and upgrading of the entire South West Corridor, spanning from the border with China (at Khorgos) through Almaty, Shymkent, and Aktobe, to the border with Russia (at Srym), The first 220 km section on the North (in Aktobe Oblast) is being financed from the national Budget. The World Bank has been requested to co-finance the section from Shymkent to Aktobe-Kyzyiorda Oblast border (total length $1,035 \mathrm{~km}$). The Asian Development Bank (ADB), the European Bank for Reconstruction and Development (EBRD), the Islamic Development Bank (IsDB) and the Japanese Bank for International Cooperation (JBIC) have also been invited to cofinance sections of the South West Corridor. The Government has also requested the Bank to coordinate the proposed investment required for the whole South West Corridor.

The Government of Kazakhstan requested one single Specific Investment Loan ("SIL") encompassing the entire length of the road corridor between Shymkent and the border between Aktobe and Kyzylorda Oblasts ($1,035 \mathrm{~km}$). This alignment contains several sections with potentially significant and large scale environmental impacts and if considered separately, in accordance with World Bank policy on Environmental Assessment (EA, OP 4.01) would be classified as Category A. Potential environmental impacts of the remaining sections are moderate, of limited duration and extent, and if considered separately, in accordance with World Bank policy on EA would be classified as Category B. However, the overall project must be classified as safeguards Category A according to OP 4.01. To achieve maximum time efficiency in meeting the requirements of OP 4.01 the corridor section to be financed by the World Bank was subdivided into 2 parts: Part 1 would be those road sections which would be assigned Category B under the World Bank EA policy and Part 2 road sections which would be assigned Category A under the World Bank EA policy. This approach was developed in cooperation with the World Banks Regional Safeguards Coordinator (RSC).

Part 1 of the investment project will encompass (i) the rehabilitation and reconstruction of the existing road between the city of Kyzylorda and the border between Kyzylorda Oblast and Aktobe Oblast (about 564 km), with exception of the Kyzylorda bypass (ca. 20 km). This part of the project will include 6 road sections where new bypasses are planned with total length of about 72 km . This entire section has been classified as environmental Category B. The planned bypass around the city of Kyzylorda is not included in this project phase but will be part of Part 2, as it has been determined to fall into Category A due to its scale and complexity.

Part 2 will be developed in parallel with the first phase for the road section between the cities of Shymkent and Kyzylorda (approximately 461 km), as well as the city bypass for Kyzylorda (about 20 km). This section has been classified environmental Category " A ", as most of the alignment entails widening of the road from a two lane cross section to four lanes, and the construction of several large bypasses and structures such as flyovers and bridges. Part 1 environmental and social safeguards studies have priority as the construction activities in this sector are planned for 2009, while works in Part 2 sectors will start only in 2010. However, the Consultant must submit both environmental and social reports in time to present the project to the Worid Bank's board of directors in March/April 2009.

The Government of Kazakhstan is attempting to follow international good practice for environmental and social aspects of road design, construction and operation and contracted Almaty based Consultant, KazDorProekt (KDP) to prepare a feasibility study and a preliminary environmental assessment corresponding to the first two of the four-phase environmental assessment process prescribed by the Kazakh regulations. However, KDP has very limited experience in preparing safeguard documentation in accordance with international standards and a review of this material by the World Bank revealed some significant shortcomings. GeoDataPlus (GD) were subsequently commissioned to undertake an ESIA that meets World Bank procedures.

1.2 Introduction to the Project

This report covers the area between the cities of Shymkent and the border between Kyzylorda Oblast and Aktobe Oblast. It focuses on the section between Shymkent and Kyzylorda (approximately 461 km), as well as the city bypass for Kyzylorda (about 20 km), as this has been classified as category 'A' under World Bank criteria. For this section most of the alignment entails widening of the road from a two lane cross section to four lanes, and the construction of several large bypasses and structures such as flyovers and bridges. The remaining section of the project from Kyzylorda bypass to the border between Kyzylorda Oblast and Aktobe Oblast has been classified as Category 'B' for which this report presents an Environmental Management Plan (EMP), which is the primary requirement for such projects in accordance with WB procedures.

The overall Project financed by World Bank sees the highway divided into 12 lots (sections) with 11 design engineers (DEs) conducting the conceptual or outline design for the upgrade works, as shown below.

Table 1-1 Project lots

Region	Lot	Category of road	Length of lot (km)	Name of designer engineer
Kyzylorda	$1240-1398 \mathrm{~km}$	II	158	Kustanaydorproject Project Institute LLC
	$1398-1578 \mathrm{~km}$	II	180	Kazniipidortrans LLC
	$1578-1702 \mathrm{~km}$	II	124	Kazdornii JSC
	$1702-1807 \mathrm{~km}$	II	105	Engineering Centre Astana LLC

Region	Lot	Category of road	Length of lot (km)	Name of designer engineer
	$1807-1837 \mathrm{~km}$	II	30	Institute Geoproject JSC
	$1837-1917 \mathrm{~km}$	I	80	Kazdornii JSC
	$1917-1980 \mathrm{~km}$	I	63	Kazdorproject LLC
	$1980-2057 \mathrm{~km}$	I	77	Kazniipi Dortrans LLC
South- Kazakhstan	Total length	$2057-2135 \mathrm{~km}$	I	82
	$2135-2231 \mathrm{~km}$	I	96	Shymkent Kazdorproject LLC
	$2231-2260 \mathrm{~km}$	I	29	Institute Geoproject JSC
	$2231-674 \mathrm{~km}($ M39 $)$	I	38	Kazakhstan Zholdary JSC
	Total length		245	
	Overall total		1062	

It is anticipated that the current DEs will complete their assignments, leading onto the next phase of Project design, the appointment of an international Project Management Consultancy (PMC) by the Ministry of Transport \& Communication/Roads Committee (MOTC/RC). The PMC will assist the RC and be assigned responsibility for the preparation of tender documents to select the Contractors who will undertake detailed design of the road and carry out the construction works.

1.3 Aims and objectives

Following on from the work of KazDorProekt (KDP) another environmental consultancy, GeoDataPlus (GD), was commissioned in August 2008 to address the gaps in environmental due diligence planning and documentation and produce an ESIA acceptable to the World Bank.

This Environmental \& Social Impact Assessment of the 'Reconstruction of the International Corridor West Europe - West China', section Shymkent to the border of Aktobe oblast, has been carried out by GeoDataPlus Ltd., which possesses the right to conduct ElAs for all types of design (planning) activities, reconstruction and new construction works; the License № 00039P of April 29, 2004 was issued by the Ministry of Environment Protection and re-issued under registration № 01193P (0042262) on January 30, 2008.

The ESIA and this report was based on information supplied to GD up to the $11^{\text {th }}$ February 2009.
This report focuses on the Environmental impacts and their mitigation and has been compiled in parallel to the social aspects, which are to be presented as a Social Impact Assessment, which will be presented alongside this EIA to form a final ESIA report. The SIA includes details of the impact on the people and society and in particular the resettlement aspects covering land acquisition, which are managed through a Resettlement Action Plan (and precursor Resettlement Policy Framework).

2. POLICY, LEGAL AND REGULATORY FRAMEWORK

2.1 Legal framework

Environmental protection is administered in Kazakhstan by the Ministry of Environmental Protection (MEP). The Environmental Code was adopted in January 9, 2007 and is the basic legislative framework for environmental protection activity. Three main laws (the Law on Environmental Protection, the Law on Ecological Expertise and the Law on Air Protection) were abrogated subsequent to their integration into the Environmental Code. Moreover, some 80 normative legal acts were abrogated after the adoption of the Environmental Code.

2.1.1 The Environmental Code

Overall content

The development of a code on the environment by the end of 2006 was requested by the President of Kazakhstan only at the beginning of March 2006. Despite this tight time frame, the Environmental Code was adopted in January 2007. Comments were invited from international and national experts as well from international organizations. The public was consulted through two public hearings. The main goal was to harmonize current environmental legislation with advanced international standards, thereby allowing transition to new standards and improving the system of State control.

Permitting and multimedia permitting

The permitting system is a component of the Environmental Code. The main change is that permits are now valid for three years rather than only one year as was the case before the Code entered into force. There are four different categories of activities that are subject to permitting. Their categorization follows the sanitary classification of industrial activities established by the Ministry of Health Care under the 2005 ministerial order "on sanitary-and-epidemiological rules and norms", 'Sanitary-and-epidemiological requirement activities falling under danger classes 1 and 2, and also investigation and extraction of minerals, except for common minerals. Activities of danger class 3, extraction of common minerals, all kinds of forest activities and special water use fall under category II. Category III covers activities of danger class 4. Danger class 5 and use of fauna, except for amateur (sports) fishery and hunting, fall under category IV. The MEP delivers permits for category I. Permits for the other three categories are issued by local government. Since 2002, single-medium permits have been replaced by multi-media permits.

Environmental Impact Assessment and Ecological Expertise

Before 2006, the provisions for environmental impact assessment (EIA), public Ecological Expertise (PEE) and State Ecological Expertise (SEE) were stipulated in the Law on Ecological Expertise. The corresponding provisions are now integrated in the Environmental Code.

The normative base of EIA development is "Instruction on conducting environmental impact assessment of planned economic activity when developing pre-planning, planning, initial project and project documentation, approved by the Order of the Minister of MEP, 28 June 2007, No. 207 p".

According to the instruction there are four stages:

1) Review of Environmental Conditions;
2) Preliminary EIA;
3) $E I A$;
4) Section "Environmental Protection"

The First stage of EIA "Review of Environment Conditions" includes general characteristic of natural and socio-economic environment of the area of planned activity, analysis of main trends of practical use of the territory and defining of principal positions of EIA. This stage of EIA is based on the feasibility study, available materials, other special literature, project description etc.

The Second stage of EIA "Preliminary EIA" - potential possible changes of components of natural and socio-economic environment and its impacts are defined.

All materials supporting decision-making on regulatory requirements (EIA study and statement, minutes of public hearings, permit applications and other supporting documents) must be reviewed by competent environmental authorities within a procedure known as "ecological expertise". Ecological expertise (EE) is conducted by The Department of Natural Resources and Environmental Management staff for category I enterprises, by TEPOs for categories II and III, and - since 2007 - by local administration (Territorial Department of Environment) for category IV enterprises. Recourse to external experts can be made but they only have a consultative role. Services provided by these experts are paid by project developers; the so-called public expertise may be conducted by independent experts. However, the final documents (expert opinions and permits) are not available to the general public and, sometimes, not even to field inspectors.

According to Article 36 of the Environmental Code "Development of Environmental Impact, assessment is obligatory for all types of activities that can have a direct or indirect impact on the environment or health of the people".

The procedure on public hearings is regulated by the 2007 ministerial order on Rules for carrying out of public hearings. EIA and SEE are two interconnected procedures. The developer has to conduct an EIA, which is carried out by accredited private companies, and is in charge of preparing the EIA documentation. The EIA procedure is a two-phase process: the proper EIA and then the SEE. Once the EIA is approved, the developer should apply to the SEE. The competent authority checks the documents' quality, prepares its own evaluation and returns both to the developer. The evaluation takes into account the opinions and views expressed by the public and other authorities which have participated in the process. The EIA procedure is performed before the permitting procedure and the developer has to attach the EIA report and the competent authority's statement together with the permit application. EIA procedure lasts about two months and SEE up to three months. A post-project analysis by the authorities is mandatory and carried out after one year.

It is forbidden to implement projects for economic and other activities or to finance it by banks and other financial institutions without a positive resolution of the state ecological examination. The positive conclusion of state ecological expertise given to the project is generally valid for five years from the date of its issuance.

Strategic environment assessment (SEA) is not explicitly mentioned in the Environmental Code. However, provisions in the Environmental Code (Article 47(2)) require that all governmental documents (draft laws, concepts, strategies, programmes and action plans) have to be submitted to the SEE procedure before adoption.

Procedures for EIA and ecological expertise are mandated in the Environmental Code and two complementary regulations, approved by the MEP on 28 June 2007. The procedure consists of several stages involving the regulated community, regulators, consulting companies and the general public. EIA serves both physical planning and environmental projects, but lacks an explicit screening phase.

In the case of green-field projects (i.e. new facilities), environmental authorities must be consulted on land allocation despite the fact that allocation as such is done by akimats (subnational administration). At this stage, project developers are obliged to assess baseline environmental conditions and to present this study, together with the Declaration of Intent, for ecological expertise. The Declaration should be discussed with the general public in hearings organized to this purpose. If environmental expert evaluation is positive, land may be allocated to the project developer.

A "preliminary" EIA is required at the feasibility study stage, when technological solutions are assessed. For a large-scale project, field prospecting should be conducted at this stage. Impacts should be estimated but precise emission calculations are not expected.

The feasibility study, including all environment related documentation, is then presented for $E E$. This EE is carried out by MEP staff at the national or local level, depending on the importance of the project.

An approved "preliminary" EIA is a prerequisite to receive a loan for implementing the project. The next stage implies a "full-fledged" EIA. At this stage, very detailed information is required, including calculations of emission limit values (ELVs), an emergency preparedness plan, monitoring programmes for all media, etc. Again, this documentation must be presented for review by authorities. If design documentation undergoes any changes at a later stage (e.g. adjustments in the technology), the developer is required to adjust the EIA materials accordingly. Such adjustments require review by authorities as well.

Finally, a "post-construction" EIA must be carried out for large projects with capital investments of over $\$ 50$ million one year after the activity starts. This is done to confirm the environmental safety of the economic activity and to correct the plan of environmental protection measures.

A recent legal requirement is the obligation to conduct EIA for existing facilities, in particular ones built during Soviet times without adequate environmental inspection. It is not clear how this new instrument differs from environmental audits. Both industry and NGOs consider that its introduction will increases administrative burden without offering clear environmental benefits.

Public hearings are required at all stages of EIA. In 2006, the total number of such hearings reached 95,073 cases (more than 50% of all EIA material) as compared to just 3,683 hearings in 2000. Minutes from these hearings are part of the EIA documentation. Although the public hearings' conduct and quality may not yet correspond to good international practice as promoted by international protocol (e.g. Aarhus convention) their wide application helps to advance the principle of public participation in Kazakhstan and to take root not only in procedural guidance but in real practice.

Project developers typically contract the preparation of EIA materials to specialized companies which must be certified by DPIMR. Certification, however, is not a guarantee of quality: some 1015 per cent of EIA materials are declined by the authorities due to poor quality.

Annual reporting on their activities is required from the companies certified to develop EIA materials. The aim and value of this reporting is unclear as it does not affect in any way the operations of these companies. Even when the EIA materials prepared by the company are
systematically deficient, this does not mean that the enterprise's DPIMR certificate is withdrawn. Authorities have two weeks to review the documentation, and then three to six (in exceptional cases) months to carry out the EE. Theoretically, the whole procedure can take over two years (it should be noted that this does not include the permitting phase, which adds another two to three months). In practice, decisions are made within one month of receipt of the complete set of the EIA materials. Because of increasing numbers of reviews, and therefore the increased administrative burden, there is a real danger that such theoretical estimates will become common practice, particularly in the regions with the highest workload (i.e. Aktyubinsk, Karaganda, Pavlodar and North Kazakhstan oblasts). Moreover, this increased workload for regulators also impacts the quality of expert reviews: most are rather general and poorly enforceable.

Public Ecological Expertise

Public ecological expertise (PEE) could be considered as equivalent to SEE, but with fewer requirements. PEE is financed by private means, ie the developer and the outcome findings are added.to the EIA and SEE documentation, given back to the developer, and registered at the local agency to which the PEE is submitted. It is rather difficult to evaluate the impact of PEE so far, since it is a very new instrument and only two PEE were carried out in the period 2003-2007.

Environmental audit

The environmental audit is regulated by the Environmental Code. The audit is mandatory when an enterprise/legal person significantly damages the environment; when an enterprise is reorganized by merging, dividing or re-allocating activities; and when an enterprise goes on bankruptcy. Voluntary audits have to follow the same procedure as mandatory environmental audits. Audits are financed by the corresponding enterprises.

Integrated permitting

The Environmental Code has also introduced integrated permitting, similar to the European Union Integrated Pollution Prevention and Control (IPPC). But only one article in the Environmental Code relates to integrated permitting. Implementation requires changing the actual institutional framework and developing regulations. To this end, the Government, through the Ministry of Economic Affairs and Budgetary Planning, is working on an institutional reform that would allow the MEP to carry out the implementation of integrated permitting. The MEP is in the process of drafting and adopting appropriate regulations.

Licensing

The 2007 Law on Licensing introduced some important changes. First, there was a reduction of the list of activities for which a licence is compulsory before starting operations; and second, instead of involving different State bodies as previously, only one State body is in charge of issuing a licence. Moreover, the time frame to get a licence has been reduced to one month for large enterprises, and less than 10 days for small businesses.

Other legis/ation

Other legislation has been aggregated into specific codes (see Annex IV). The Forest Code, the Land Code and the Water Code were adopted in 2003. The Forest Code regulates the use, protection and conservation of forests as well as forest restoration. Specific issues related to the
protection and conservation of forests, are regulated in by-laws: for instance, the 2002 governmental resolution on Measures of Haloxylon ammodendron tree conservation, the 2002 government resolution on Rules for compensation of damage to forestry and the 2001 government resolution on damage caused by illegal collection, logging, damage or destruction of plants in the Red Book, and the decision on Rules of forest fire safety. In 2004, the Parliament adopted a new version of the Forest Code.

Table 2-1 Legislation and regulations governing the EIA process and environmental review

Name of Legislation	Date and Number of registration
Methodology for Determining Emissions Standards to the Environment	Approved by the Order of the Minister of MEP, 21 May 2007, No. 158-p".
"Instruction on Conducting Environmental Impact Assessment of Planned Economic Activity when Developing Pre-planning, Planning, Initial project and Project documentation,	Approved by the Order of the Minister of MEP, 28 June 2007, No. 204-p".
The Amendments to the Order of the Minister of Environment Protection of Republic of Kazakhstan on Approval of "Instruction on Conducting Environmental Impact Assessment of Planned Economic Activity when Developing Pre-planning, Planning, Initial project and Project documentation"	Approved by the Order of the Minister of MEP, 20 March 2008, No. 62-p".
Regulations on Conducting State Ecological Expertise.	Approved by the Order of the Minister of MEP, 28 June 2007, No. 207-p".
The Amendments to the Order of the Minister of Environment Protection of Republic of Kazakhstan on Approval of Regulations on Conducting State Ecological Expertise	Approved by the Order of the Minister of MEP, 9 October 2007, No. 296-p".
Rules for Conducting Public Hearings	Approved by the Order of the Minister of MEP, 7 May 2007, No. 135-p".
Instructions for Qualifying Requirements to Licensed Activity on Environmental Design, Regulation and Development of Environmental Impact Assessment	Approved by the Order of the Minister of MEP, 21 October 2003, No. 239-p".
Methodological Guidelines to the Licensed Activity on Environmental Design, Regulation and Development of Environmental Impact Assessment	Approved by the Order of the Minister of MEP, 10 February 2005, No. 51-p".
Final Environmental Supervision Experts Opinion on Definite Types of Licensed Works and Services	Approved by the Order of the Minister of MEP, 1 July 2004, No. 192-p".
Instructions on Negotiation and Permissions to Special Water Use in the Republic of Kazakhstan	Joint order of the Minister of Health of the Republic of Kazakhstan dated 24 November 2004 № 824, Minister of Environment of the Republic of Kazakhstan of 1 December 2004 number 309-p, Acting Chairman of the Committee on Water Resources, Ministry of Agriculture of the Republic of Kazakhstan dated 11 November 2004 number 236-S, Chairman of the Committee of Geology and Mining Ministry of Energy and Mineral Resources of the Republic of Kazakhstan on 2 December 2004 number 161-p.

	Joined by the Ministry of Justice of the Republic of Kazakhstan 13 December, 2004 N 3263
The Rules for Licensing and Qualification Requirements to Work Implementation and Delivery of Services in the Field of Environmental Protection	Approved by the Order of the Government of Republic of Kazakhstan, 5 June 2007, No. $457-\mathrm{p"}$.
Environmental Code of the Republic of Kazakhstan	9 January 2007, No. 212-p".
Law of the Republic of Kazakhstan «On Amendments and Additions to Some Legislative Acts of Kazakhstan on Environmental Issues»	9 January 2007, No. 213-p".
Law of the Republic of Kazakhstan «On Ratification of the Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade»	20 March 2007, No. 239-p".
Law of the Republic of Kazakhstan «On Ratification of the Stockholm Convention on Persistent Organic Pollutants»	7 June 2007, No. 259-p".
The Concept of Transition to Sustainable Development for 2007-2009 (Action Plan)	The Order of the President of RK, 14 November 2006, No. 216-p".
The Concept of Environmental Security of the Republic of Kazakhstan for 2004-2015	The Order of the President of RK, 3 December 2003, No. 1241

2.1.2 International Cooperation and Treaties

The Republic of Kazakhstan has ratified 18 international agreements in the area of protecting the environment and the use of natural resources.

- The Convention of the World Meteorological Organization (1993).
- The International Convention on Civil Liability for Damages from Oil Pollution (1994).
- The Convention on the Safety of Organisms in the Sea (1994).
- The Convention on Bio-Diversity (1994).
- The Convention on Protecting World Culture and Natural Legacy (1994).
- The UN Framework Convention on Climate Change (1995).
- The UN Convention on Desertification (1997).
- The Vienna Convention on Protecting the Ozone Layer (1997).
- The Montreal Convention on Substances Destroying the Ozone Layer (1997).
- The London Protocol to the Montreal Convention on Substances Destroying the Ozone Layer (2001)
- The Agreement to the Energy Charter and the Protocol to the Energy Charter on Issues Concerning Energy Effectiveness and the Corresponding Ecological Aspects (1995).
- The Convention on International Trade in Types of Endangered Wild Flora and Fauna (1999)
- The Convention on Prohibiting the Military and Other Harmful Use of Stimulants on the Environment (1995).
- The Convention on Access to Information, Participation of the Public in Adopting Decisions and Access to Justice on Issues Concerning the Environment (2000).
- The Convention on Evaluating the Effect on the Environment in the Trans-Boundary Context (2000).
- The Convention on the Trans-Boundary Effect Industrial Accidents (2000).
- The Convention on Protecting and Using Trans-Boundary Waterways and International Lakes (2000).
- The Convention on Trans-Boundary Air Pollution at Long Distances (2000).

Kazakhstan is a party to 24 multilateral environmental agreements (MEAs), 12 of which it has ratified since the first EPR. In 2006, Kazakhstan adopted the Concept of transition of the Republic of Kazakhstan to sustainable development for the period 2007-2024 (CTSD), which has the potential to facilitate changes in the economy and society towards higher sustainability. In compliance with its obligations under MEAs, Kazakhstan has been developing action plans and practical measures for implementation in cooperation with international organizations such as UNECE, UNEP, GEF, the EU and the World Bank, as well as with a number of donor countries.

Kazakhstan became the $154^{\text {th }}$ Contracting party to the Ramsar Convention and the Convention entered into force for Kazakhstan on 2 May 2007. The Ramsar Information Sheet indicates one major site; Korgalzhyn and Tengiz Lakes are representative examples of a shallow lake system with a mix of fresh, salty and brackish water bodies characteristic for the North of Kazakhstan, situated in a steppe landscape. There are no sites of such importance within the corridor of the highway under consideration.

2.1.3 Transport Law

The Law of the Republic of Kazakhstan 'On the road' dated 17 July 2001 laid the basic legal, economic and organizational principles of governance roads in the Republic of Kazakhstan and set their order.
According to the Law 'On the road', the road is complex of engineering structures for car traffic, providing uninterrupted and safe movement of cars and other vehicles with the speeds, pressures, dimensions, as well as plots of land provided for the allocation of the complex (transport land), and the airspace above them in the area of the overall dimensions.
For the construction and maintenance of roads of common use, land users are provided with the land for a right of way on the basis of established norms, depending on the roads category and under the project documents. Lands for the public roads, including roads or their sections transmitted by the concession, are allocated to traffic authorities for the permanent or temporary use, in the manner prescribed by the laws of the Republic of Kazakhstan.
The size of the right of way for projected roads for common use is set depending on the category under the rules of allotment of land for roads of public use, namely: for roads of I technical categories - 35 meters from the roads axis, for roads of II technical categories -20 meters, for roads of III technical categories - 15 meters, for roads of IV technical categories - 13 meters, for roads of V technical categories - 12 meters.
Road's right of way lands are in the possession and use of road authorities or concessionaires, and are intended only for the development, improvement of roads and the siting of road services. In the right of way of roads of common use it is forbidden to carry out any kind of works or to place any buildings without the permission of the appropriate authorities.
Right of way of roads of international, republican, regional and district values are not used by traffic authorities or the concessionaire may be granted a temporary short-term land use by public authorities for road and local executive bodies within their competence on a contractual basis to individuals and legal entities for siting advertising and services on conditions for reducing capacity of the road for safety vehicles and environmental protection.
The development of project documentation for the construction of new and reconstruction of existing roads carried out in accordance with the Law «On the road» and the legal and technical documentation used in the design and construction of roads.
The developed project documentation is adjusted and checked for compliance with all rules and
requirements in the construction and design of roads with executive bodies in the roads and state construction committee.

Article 2, Paragraph 2 of the Law «On the road» states that if international treaties ratified by the Republic of Kazakhstan establishes other rules than those established by this Act the rules of the international treaties shall apply.

2.1.4 Air quality standards

The standards for air quality establish the permissible limit of the content of harmful substances both in the production area and in the residential zone of the populated localities. The main terms and definitions related with the atmospheric air contamination, monitoring programs, behaviour of pollutants in the atmospheric air are determined by the GOST 17:2.1.03-84; Environmental Protection, Atmospheric Air' Terms and Definitions for Contamination Control.

For comparative evaluation of the atmospheric air contamination the approach uses various indices which take into account the presence of several pollutants. The most widely applicable index is the integrated atmosphere impurity index.

The regulatory document containing the information on the MAC of the harmful substances in the atmospheric air is the "Sanitary and Epidemiological Requirements for the Atmospheric Air Quality" approved by the Order of the Ministry of Health of the RoK № 629 dd 18.08.2004.

The emission of the hazardous substances (pollutants) in the atmospheric air by the stationary source is allowed only on the basis of the permit issued by the authorized state body in the field of atmospheric air protection or its territorial subdivisions in the manner established by the Government of the Republic of Kazakhstan. The procedure of issue of the atmospheric air pollution permits during operation of the motor vehicles or other transport facilities is defined by the Government of the Republic of Kazakhstan.

In case of absence of atmospheric air pollution permits and permits to harmful physical effects on the atmospheric air as well as at violation of the conditions stipulated by such permits the activity of the individual and legal persons causing the atmospheric air pollution and harmful physical effects on the atmospheric air can be prohibited or suspended in the procedure determined by the legal acts of the Republic of Kazakhstan.

The legislative and regulatory and procedural documents in the field of the atmospheric air protection are listed below:

Table 2-2 Air quality legislation

Instruction on Agreement and Approval of the Design Standards of the Maximum Permissible Emissions (MPE) and Maximum Permissible Discharges (MPD).	The Order of the Ministry for Environmental Protection of the RoK No 61-n dd 24.02.2004.		
Collected Book of Methods for Calculation of the			
Atmospheric Air Pollution by Different Types of Production	The Order of the Ministry of Ecology and Bioresources dd 01.12.96. Included in the List of the current regulatory		
legal acts in the field of the environmental			
protection, the Order of the Ministry for			
Environmental Protection No324-n dd October		,	
:---			

	27, 2006.
The inventory Rules for Emissions of the Hazardous Substances (Pollutants), harmful Physical Effects on the Atmospheric Air and Their Sources	The Order of the Ministry for Environmental Protection of the RoK № 217-n dd August 4, 2005.
The Procedure of Calculation of the Hazardous Substances Concentrations Containing in the Atmospheric Discharges of the Enterprises. Guiding normative document 211. 2.01.01-97	The Order of the Ministry of Ecology and Bioresources dd 01.08.1997. Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-n dd October 27, 2006.
The Procedure of Calculation of the Hazardous Substances Concentrations Containing in the Atmospheric Discharges of the Enterprises.	Approved by the Order of Minister of the Environmental Protection №100-n dd April 18, 2008 (Attachment 18)
Recommendations on Execution and Content of the Design Standards of the Maximum Permissible Emissions (MPE) in the Atmospheric Air made by the Enterprises of the Republic of Kazakhstan. Guiding normative document 211.02.02-97.	The Orders of the Minister of E:cology and Bioresources of the RoK dd August 1, 1997 and Order of the Ministry of natural resources and environmental protection of the RoK № 156 dd 06.07.2001. Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-n dd October 27, 2006.
The Guidelines for Calculation of the Atmospheric Air Pollutions Caused by the Building Industry Enterprises. Enterprises of the Aggregates and Porous Aggregates.	The Orders of the Ministry of natural resources and environmental protection of the RoK dd July 21, 1992 and Order №156 dd 06.07.2001. Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-n dd October 27, 2006.
Instruction on the Normalization of the Emission of Contaminants into the Atmosphere of the Republic of Kazakhstan	The Order of the Ministry of natural resources and environmental protection of the RoK № $516-\Pi$ dd 21.12.00. Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-n dd October 27, 2006.

The Procedure of Calculation of Discharge (Emissions) of	
Contaminants into the Atmosphere During Production of	
Galvanic Metal Coatings (based on values of the specific	
emissions)	The Order of the Ministry for Environmental Protection of the RoK No328-n dd December 20, 2004
Guiding normative document 211.2.02.07-2004	Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection No324-n dd October $27,2006$.
The Procedure of Calculation of Discharge (Emissions) of	
Contaminants into the Atmosphere During Coating of the	
Paint Materials (based on values of the specific emissions)	The Order of the Ministry for Environmental Protection of the RoK №328-n dd December 20, 2004
Guiding normative document 211.2.025.05-2004	Included in the List of the current regulatory
legal acts in the field of the environmental	
protection, the Order of the Ministry for	
Environmental Protection №324-n dd October	
$27,2006$.	

	2008. (Attachment 14)
The Calculation Procedure of the Specific Emissions of the Atmospheric Pollutants and Damage Depending on the Type of Fuel Used in the Republic of Kazakhstan Guiding normative document 211.3.02.01-97	The Order of the Ministry of Ecology and Bioresources of the RoK dd 09.07.97. Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-n dd October 27, 2006.
The Procedure of Calculation of Discharge (Emissions) of Contaminants into the Atmosphere Caused by the Motor Transport Enterprises	Approved by the Order of the Minister of Environmental Protection №100-n dd April 18, 2008 (Attachment 3)
The Inventory Procedure of Harmful Physical Effects on the Atmosphere and their Sources	The Order of the Ministry of Environmental Protection of the RoK № 229 dd July 18, 2007 (according to subitem 28 of article 17 of the Environmental Code of the RoK)
Technical Regulations «The Requirements for Environmenta Emission During Combustion of the Various Types of Fuel in the Boiler Furnaces of the Thermal Power Stations	The Government Decree N 1232 dd December 14, 2007
The Rules of Governmental Accounting of the Sources of Greenhouse Gases Emission into Atmosphere and Consumption of Ozone-destroying Substances.	The Government Decree N 124 dd February 8, 2008
The Rules of Restriction, Stoppage or Decrease of the Greenhouse Gases Emissions into Atmosphere	The Government Decree N 128 dd February 11, 2008
The Guidelines for Calculation of Emissions from the Fugitive Emission Sources	Approved by the Order of the Minister of Environmental Protection of the RoK №100-п dd April 18, 2008 (Attachment 13)

2.1.5 Water quality legislation and standards

The main legislative act in the area of water resources protection and use is the Water Code of the Republic of Kazakhstan № 481 dated July 09, 2003. According to the definition provided in this document "protection of water bodies" is an activity aimed at preservation, rehabilitation and reproduction of water bodies as well as prevention of water from detrimental effect. Section 7 of this Law regulates issues related to the protection of water bodies.
I. According to Article 112 the water bodies shall be protected from:

1) natural and industrial pollution by hazardous chemical and toxic substances and their compounds, as well as thermal, bacterial, radiation and other types of pollution;
2) infestation (blockage) with hard, non-soluble subjects, production and household and other wastes;
3) desiccation.
II. Water bodies shall be protected to prevent:
4) disturbance of the environmental stability of the natural systems;
5) causing harm to the lives and health of population;
6) reduction of fishery resources and other water fauna;
7) deterioration of the water supply conditions;
8) weakening of the natural self-reproduction and cleansing functions of the water bodies;
9) other unfavorable conditions that negatively affect physical, chemical and biological qualities of water bodies.
III. Protection of water bodies is carried out through:
10) making common demands related to the protection of water bodies to all water users who use water for any purposes;
11) improving and applying water protective activities/measures with the help of new equipment and environmentally and epidemiologically safe technologies;
12) establishment of water conservation zones and sanitary protection zones for protection of public (drinking) water supply sources;
13) execution of public (state) and other forms of control over the use and protection of the water bodies;
14) applying sanctions for non-observance of the water protection requirements.
IV. Central and local executive authorities of the Oblasts (cities of republican significance, capitals), in line with the legislation of the Republic of Kazakhstan, take measures in compliance with the principles of sustainable development towards water resources conservation, prevention of pollution and blockage.
V. Physical and legal entities, activities of which affect the water bodies, are obliged to carry out managerial, technological , forestry, ameliorative, land treatment, hydrotechnical, sanitary-epidemiological and other activities, which ensure protection of water bodies from pollution, blockage and depletion.

Article 116 of the Law regulates issues related to the water protection zones: to maintain water bodies and water facilities in the condition required by the hygiene and sanitary and ecological norms; to prevent contamination, blockage and depletion of the surface water; to preserve flora and fauna water protection zones and belts are required.

Water protection zones and belts as well as the regime are established by the local executive authorities of the oblasts (cities of republican significance, capitals) upon agreement with the authorized entity in charge of the use and protection of waters, and on the basis of the approved detailed design agreed with the authorized entity for sanitary-epidemiological welfare of the population, central executive entity of the Republic of Kazakhstan for the environment protection, and central authorized entity for land resources. In the mudflow areas/regions, in addition to the above requirements, the project designs should also be agreed with the central executive entity of the RoK for emergency planning.

While developing any project, which may have any impact on the water system/resources, the project designs should be agreed with the local executive entity for water resources protection.

A Water Code, adopted on March 31, 1993, is in force in the Republic of Kazakhstan. The Government has approved the Conception for the development of the water sector of the economy and water policy until 2010 and has approved the sectoral program Drinking Water.

In developing the Water Code, the Government of the Republic of Kazakhstan has adopted normative acts concerning the procedure for allowing water reservoirs for special use, a procedure for agreeing to and issuing permits for the special use of water, a procedure for using water for fire fighting needs, classifying water ways as navigable routes, and for using reservoirs for air transport needs. The Government has approved lists of reservoirs (underground waters) that have health significance for the Republic and reservoirs that have special state significance or special scientific value, the granting of which for use is restricted or entirely forbidden.

Important for the state regulation of water relations are, as approved by the Government of the Republic of Kazakhstan, a procedure for developing and approving plans for the comprehensive use and protecting of water, a procedure for conducting a state water survey, a procedure for the state recording of water and the use thereof, a statute on a procedure for calculating, levying and paying for the use of water resources of surface sources for sectors of the economy of the Republic of Kazakhstan.

Issues related to water protection are reflected in certain normative legal acts, as approved by the Government of the Republic of Kazakhstan, including a statute on water protected zones and areas, and regarding state control of the use and protection of water resources.

There are the microbiological and parasitologic water indices (number of microorganisms and quantity of coliform bacteria per unit volume) set according to the sanitary characteristic. The toxicological water indices characterizing the safety of its chemical composition are determined by the content of chemical substances which number shall not exceed the established standards.

Water quality also includes for the following features to be taken into consideration: temperature, transparency, colour, smell, flavour and hardness.

The requirements for quality of water of the non-central water supply are defined by the SanPiN (sanitary rules and norms) 2.1.4.1175-02 «Sanitary protection of water sources». The smell, flavour, colour of water, turbidity and coli index are normalized at that and it is specified that the content of the chemical substances shall not exceed the values of the relevant standards.

As for the atmospheric air so for the water such standards are the maximum allowable concentrations (MAC). The MACwrf (water reservoirs for fishing) are stricter than MACwrdw (water reservoirs for drinking water) as a rule. It is necessary to emphasize that this refers primarily to the fish industry as such and protection of the human needs though some principles of water ecosystem protection, to all probability, were also taken into account during determination of the standards.

As in the case of atmospheric air there are the various indices used for comparative assessment of the water contamination which enable the consideration of the presence of several pollutants. The most widely used index is the integrated hydrochemical water impurity index (WII). The basic document regulating the condition of the surface waters and content of the hazardous substances in them is the sanitary and epidemiological norms and regulations «Sanitary and Epidemiological Requirements for the Surface Waters Protection Against the Pollution » № 3.dd 02.03.04 approved by the Order of the Ministry of Health of the RoK № 506 dd 28.06.2004.

The effluent of the hazardous substance (pollutants) in the surface water resources is allowed only on the basis of the permit issued by the authored state agency in the field of water bodies'
protection or its territorial subdivision in the procedure determined by the Government of the Republic of Kazakhstan.

The procedure of issue of the surface water pollution permits during operation of the motor vehicles or other transport facilities is defined by the Government of the Republic of Kazakhstan.

In case of absence of the surface water pollution permits as well as at violation of the conditions stipulated by such permits the activity of the individual and legal persons causing the effluent of hazardous substances (pollutants) into the surface water bodies and harmful physical effects on them can be prohibited or suspended in the procedure determined by the legal acts of the Republic of Kazakhstan.

The legislative and regulatory and procedural documents in the field of the water environment protection are listed below:

Table 2-3 Water quality legislation

Recommendations on Execution and Content of the Design Standards of The Maximum Permissible Discharge (MPD) in the Water Bodies for the Enterprises of the Republic of Kazakhstan.	The Order of the Ministry of Ecology and Bioresources of the RoK 1992. Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-n dd October 27, 2006.
Instruction on the Normalization of the Discharge of Contaminants into the Water Bodies of the Republic of Kazakhstan Guiding normative document 211.2.03.01-97	The Order of the Ministry of Natural Resources and Environmental Protection of the RoK № 516-п dd 21.12.00. Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-n dd October 27, 2006.
The Calculation Procedure for Standards of Discharged Waters with Pollutants (MPD) into the Water Bodies, Disposal Fields and Relief of Land	Approved by the Order of the Minister of Environmental Protection №100-n dd April 18, 2008 (Attachment 19)
The Procedure of Establishment of the Maximum Permissible Discharges (MPD) of the Pollutants onto the Disposal Fields and Natural Depressions of the Land. Guiding normative document 211.3.03.03-2000	The Ministry of Environmental Protection of the RoK №156-n dd 06.07.2001 Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-r dd October 27, 2006.
Temporary Calculation Procedure of the Maximum Permissible Discharges (MPD) of the Substances Drained with the Wastewaters into the Accumulator Tanks.	The Order of the Ministry of Ecology and Bioresources of the RoK 1997. (On temporary use of the regulatory and procedural document until January 1, 2007) Included in the List of the current regulatory legal

	acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-n dd October 27, 2006.
The Recommendations on Control over the Operation of the Treatment Facilities and Discharge of the Wastewaters.	The Order of the Ministry of Ecology and Bioresources of the RoK dd 21.05.94. Included in the List of the current regulatory legal acts in the field of the environmental protection. the Order of the Ministry for Environmental Protection №324-п dd October 27, 2006.
The Rules of Surface Waters Protection in the RoK Guiding normative document 01.01.03-94	The Order of the Ministry of Ecology and Bioresources of the RoK dd 27.06.94. Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-n dd October 27, 2006.
The Guidelines on Application of the Rules of Surface Waters Protection in the RoK	The Order of the Ministry of Ecology and Bioresources of the RoK dd 12.02.97. Included in the List of the current regulatory legal acts in the field of the environmental protection, the Order of the Ministry for Environmental Protection №324-п dd October 27, 2006.
The Procedural Definitions of Norms and Standards of Water Resources Use in the Various Natural Climatic Zones of the Republic of Kazakhstan During Carrying out of the Ecological Zoning.	Approved by the Order of the Minister of Ecology and Bioresources of the RoK dd 1997

2.1.6 Soil standards

There were new sanitary rules introduced in Kazakhstan following the long-term sciertific studies SanPiN (Sanitary Rules and Norms) 2.1.7.1287-03 Sanitary and Epidemiological Requirements for Quality of Soil and Subsoils which establish the specifications for soils quality in the inhabited localities and agricultural lands and control the observance of the sanitary-hygienic standards during location, engineering, construction, renewal (technical upgrading) and operation of the facilities of different purposes, including those which may cause the adverse effect on the soils status.

The main terms related to the chemical contamination of soils are defined by the GOST 27593-88. Soils. Terms and Definitions. The basic regulatory document for control of the soil pollution content is «Standards of the Maximum Allowable Concentrations of the Hazardous Substances, Harmful Microorganisms and Other Biological Materials Being the Soil Pollutants» approved by the Order of the Ministry of Health of the RoK №99 dd 30.01.2004 and Order of the Ministry for Environmental Protection of the RoK №21ח dd 27.01.2004.

The maximum allowable concentrations (MAC) or allowable permissible concentrations (APC) of the chemical substances in soil are the principal criterion of the sanitary assessment of the soil contamination by the chemical agents.

The verification of the MAC of the chemical substances in the soil is based on 4 main nuisance values identified experimentally:

- translocation effect characterized by the penetration of the substance from the soil into the plant;
- water migration effect characterized by ability of the substance to penetrate from the soil to the subsoil waters and water sources;
- air migration effect characterized by the penetration of the substance from the soil into the atmospheric air;
- general sanitary effect characterized by the impact of the pollutant on the soil self-purification capacity and its biological activity.

In case of soil contamination by the various substances it is allowed to evaluate the hazard of the soil contamination based on the most toxic elements with the maximum content in the soil.

2.1.7 Noise standards

The level of the road traffic noise is determined according to the norms of the SNiP (construction norms and rules) II-12-77 «Noise Protection». The limit of noise exposure generated by the motor vehicles in the distance of two meters from the buildings faced to the noise sources in compliance with the SNiP II-12-77 (tab.1.2) is 70 dBA .

The maximum allowable noise level is assumed for the territories neighboring on the residential houses, rest areas of the micro-districts and residential groupings, school areas, playgrounds of the preschool after adjustment as follows:

- for noise made by the motor vehicles - 10 dBA
- for existing residential construction - 5 dBA
- for daylight time from 7 hour till 23 hour - 10 dBA.

2.1.8 Health and safety during construction and operation

Health and safety during the road construction and operation

It is required to follow the requirements of the SNiP 3.06.04-91 «Construction Safety» during the execution of works. There are the «Safety Regulations for Construction, Repair and Maintenance of the Automobile Roads», «Regulations for Safety and Production Sanitary During the Building of the Bridges and Pipes» are applied in the road construction. At performance of the road construction works it is necessary to use the "Safety Instructions» for each construction machine.

The personal protective equipment shall comply with the applicable GOSTs (apron under the GOST 12.4.029, rubber gloves under the GOST 20010, respirator "The Petal" under the GOST 12.4.028, gloves under the GOST 12.4.010, goggles under the GOST 12.4.013 and breathing mask of B type or B with filter, helmets).

The site shall be kept in a safe, clean and good sanitary state. The "Contractor" shall bear the responsibility for cleanup of the site from garbage, construction waste and household rubbish and their removal to the municipal solid waste landfill (MSW). The "Contractor" shall be guided by the SanPiN №3.01.016.97 in that regard.

In addition, it is necessary to carry out the routine inspection of the machinery and equipment for purpose of the trouble shooting and observance of the time of repair, training and instruction of the workers engaged in maintenance of the machinery, tools and equipment on safe methods and techniques of work. The protective measures with respect to the equipment are alsc important for prevention of the injuries and accidents. Such equipment includes the following:

- motor vehicles;
- pumps, compressors;
- generators, crushing equipment;
- lifting equipment (cranes, hoists, wire ropes, loaders):
- electrical equipment.

For provision of the sanitary and living conditions for the builders it is required to establish a field camp made of the mobile rail cars: dressing rooms, drying premise, wash rooms, shower rooms, warming premise for workers, dining facility with three meals daily, toilet facility, field office, rest room, machinery parking facility and household waste storage area. There shall be the information on safety, occupational health, production and household sanitary in the rest room. There shall be the medicine boxes, first-aid outfit, drinking water and service water kept in the separate containers provided on the construction sites and field camps. The drinking water shall be located at the distance of maximum 75 m from the working area. The water permit shall be obtained in the sanitary supervision and disease control authorities and comply with the requirements of the SanPiN of the Rok № 3.05.017.97.

It is required to perform works during the hours of darkness provided that artificial lighting in accordance with the standards of the electric lighting for the installation and construction works. Irrespective of the lighting of the sites and working areas the machinery shall be equipped with the independent (built-in) lighting of the working elements and control devices.

The road-building machines and plants' engines shall be fueled up and filled with the lubricants on the horizontal location using the natural light or electric lighting which operates on mains power supplies or is battery-powered. The smoking, striking matches and using the kerosene lamps or other naked light sources are prohibited during the fueling of the machinery up. The filling with the ethyl gasoline is permitted only by means of the filling stations. All other methods of fueling are strictly prohibited in this case.

Safety rules for handling of the tools

All tools - air-operated, electrified and hand tools - shall be stored on the pallets in the stock rooms. It is necessary to protect the edged components of the tools by casings or other means during transportation and carrying. It is prohibited to distribute the faulty or uninspected tools for work performance.

It is prohibited to leave off hand the mechanical tools connected to the electrical supply network or compressed air pipelines; to pull up and bend the cables and air hose pipes; to lay cables and hose pipes with their intersection by wire ropes, electric cables, to handle the rotating elements of powerdriven hand tools.

Storage of fuel and chemical substances

The storage of all types of fuel and chemicals shall be in the special location with the mandatory barbed wire fence. The storage area shall not be located near the water source and depressions.

The ground and fenced territory shall be convenient and ensure the possibility of location of the fuel tanks with 110% tankage of the required volume. The filling and unloading shall be strictly controlled and performed in accordance with the established procedure.

All valves and plugs shall be protected against the undesirable interference and vandalism and shall be turned off and opened easily when used. The inner surface of the tanks shall be clean. The measurement shall be carried out so that the impact of moisture and water was not taken into account.

Basic safety rules during operation of the coating plant

Before the launch of the plant equipment it is necessary to examine the working order of all moving assemblies and engines and verify also that all maintenance workers are in their positions. There is a signal given before the start up. In case of absence of the automatic ignition systems it is necessary to have the special flame for lighting of the atomizer burner. There shall be the baffle plate made of the noncombustible material installed at start up and adjustment of the burners.

In case of absence of the automatic control system of the coating plant and cement concrete plant the personnel of the storehouses for asphalt-coated aggregates, mineral dust and cement and weight-men and burner-men shall be provided with the protective glasses. All asphaltic valves shall be opened in a gradual manner. It is required to clean and sand the bitumen contaminated areas regularly.

The inspection and repair of the drying cylinders and mixing machines are allowed only after their complete shutdown and cooling of the drying cylinders. There shall be the dust control of all joints and materials reloading blocks and the exhaust of dust and gases by the exhaust ventilation and special dust-arresting equipment provided on the coating plant and cement concrete plant.

From time to time it is necessary to examine the availability and undamaged condition of all protection enclosures fixed on the machinery and units of the coating plant and cement concrete plant.

The bitumen storage facilities of the coating plant shall be fenced and protected by the shed and access holes of the bitumen melting houses and supply tanks shall be either closed securely or equipped with the safety guards and roofs.

In case of the sudden stop of one machine of the technological complex it is required to shutdown all other assemblies and devices starting from the place of machine unloading and then towards the block of the ready mix discharge.

The resumption of work after such shutdown is permitted only under the order of the shift machine operator. The state and working order of all automation system (monitoring equipment and control devices) and mechanisms of local start up of the machinery and equipment on the automated coating plant and cement concrete plant shall be inspected on monthly basis.

2.1.9 Archaeology and cultural heritage

The main legislation comprises:

- The Law of the Republic of Kazakhstan "About Culture", dated 15.12.2006
- The Law of the Republic of Kazakhstan "On Protection and Use of the Historical Cultural Heritage", dated 2.07.1992
- The Land Code of the RoK, dated 20.06.2003

For the purpose of an efficient arrangement for the recording and protection of the historical and cultural monuments they are divided into the following categories:

- historical and cultural monuments of the international status representing the historical, scientific, architectural, artistic and memorial objects included in the UNESCO World Heritage List;
- historical and cultural monuments of the republican status representing the historical, scientific, architectural, artistic and memorial objects, having the special significance for the history and culture of the whole country;
- historical and cultural monuments of local significance representing the historical, scientific, architectural, artistic and memorial objects, having the special significance for the history and culture of the oblasts (city of republican status, capital), regions (cities of oblast subordinance).

Extracts from the relevant legislation are presented in Appendix 13.

2.2 Comparison of National environmental legislation and World Bank standards

An evaluation of the national environmental protection legislation and WB procedures and its bearing on the Project is presented in this section of the report. Much of the environmental legislation of Kazakhstan has been designed to provide for control of developments and control of adverse impacts on the environment and human health. The current practice and quality of ElAs prepared under Kazakh legislation for Ecological Expertise does not accord with best international practice. It is considered too schematic and lacking specific reaction to the particular characteristics of each case, often resulting in a lack of realism. The submissions of EIA in Kazakhstan is a much more formal process, which appears to focus more on the calculation of emissions, for which charges are levied and is weak on relevant analysis and conclusions with a focus on understanding risks and impacts and developing specific actions to avoid or mitigate them. Data collection often is carried out in a generalist way disconnected from the objective of the EIA and the geographical boundaries of the project.

Public consultation in Kazakhstan is a far less involved process than Bank policy prescribes, and is often restricted to the local authorities, rather than the general public ${ }^{1}$. This aspect is being reconciled for the Project, by holding an initial and then second round of public consultations (Annexes 11 and 12). In addition, for the Project to be acceptable in country, the 12 ElAs (10 outstanding at time of report submission) must be prepared and submitted to the relevant Oblast Environmental Departments and Ecological Expertise conclusions obtained. In parallel, this ESIA must be completed by conducting the consultations and incorporating the results of the public hearings.

The practical procedures are bureaucratic and are not adapted to monitoring during construction of a project, as for example the Oblast Environment Department has to apply to the Chief Prosecutor's Office for an application to conduct a site audit and can do that only once per year, giving the contractor 2 weeks notice of the upcoming audit. The content of Kazakh EMPs includes

[^0]only a description of generic mitigation and monitoring measures, without location and responsibility details, focusing on listing norms and standards and is of little use to contractors.

Standards seem to be used as thresholds above which pollution is permitted so long as payments are made. In other words, the use of standards to protect the environment is at times questionable, as there is no realistic proportion between the fees or fines paid by the polluters and the environmental and consequentially economic damage, in summary resulting in polluters getting away much too cheaply.

Overall, there are several public organisations involved to varying degrees in environmental protection. These include the Ministry of Environmental Protection, Ministry of Health, Ministry of Agriculture and Ministry of Energy and Mineral Resources. There are special institutions in Kazakhstan such as the State Expertise in Environment and several environmental think tanks also involved.

A comparison of the legislation is presented below in Table 2-4.

Table 2-4 Comparison of Kazakhstan EIA and environmental legislation and World Bank Standards

EA Step	Kazakhstan	WB
Sources	RK 2007. Ecological Code Ministry of Environmental Protection Order 204-n, 28 June 2007: "The Instruction of Conducting the Environmental Impact Assessment during the preliminary planning, planning, preliminary design and full design documentation"	World Bank Operational Policy 4.01
Basic Principles		
Most sensitive component rule	There does not appear to be a 'most sensitive' rule. The sensitivity of project is measured by the Sanitary Epidemiological (SE) classes of dangers. There are four categories and within each, one or more levels of danger, A category 1 project has two levels of severity, either trigger a full EIA. A Category 2 project is considered a $3^{\text {rd }}$ level severity and as such a lesser assessment is undertaken, although still referred to as an Environmental Assessment. A category 3 and 4 project are considered $4^{\text {th }}$ and $5^{\text {th }}$ level severity and as such generally do not warrant an assessment.	Projects are categories according to the most sensitive component, e.g. if 6 of 7 components are not sensitive and one is the entire project becomes a Category A or B .
	The planning and conduct of an assessment is the duty if the proponent, in this case MOTC. MOTC often retains a licensed consultant to do this work; and frequently a member of the team undertaking the Feasibility Study. The assessment must be preceded with a scoping study which must be approved before the EIA can begin. The EIA process has 5 stages: 1) Overview of Environmental Condition;	Usually EAs are required to be prepared by the country, and donors will request this. Often the proponent's EA capacity is not sufficient or funds are scarce, or the EA prepared is incomplete or non-compliant, in which case consultants may help to fill the gaps, underiake new studies on behalf of the proponent or assist national specialist to fill the gaps and improve the documentation. This is a proponent focused activity, with the requirement

	2) Preliminary EIA 3) EIA; 4) Chapter of Project Documentation "Environmental Protection"; 5) Post-project Analysis.	for close collaboration and ownership.
Document Preparation		When the donors prepare IEEs, SiEAs and EIAs on behalf of the country, these documents are always the country's documents, and as such must be presented as if the country were preparing them. Where consultant recommendations are included, this must be made clear. Summaries of the IEEs and EIAs often contain review and comments by the donors or the donor's consultants on behalf of the Banks
Document Ownership	Category 1 projects are assessed by the MOEP in Astana, Category 2 and 3 by the Oblast or Regional Environment Department, and 4 at the rayon level.	
The Environmental Management Plan	As specified in Ecological Code Article 41 an environmental assessment documentation should include "10) Description of measures provided for preventing and mitigating impacts on environment, including proposal for ecologic monitoring"-more or less a partial EMP. This description does not comply with donor requirements and construction monitoring is far from rigorous.	The EMP is required by WB for A and B category projects, It is considered to be an integral but distinct part of the assessment document. It is not a separate document, but the key summary of the mitigation and monitoring measures to be applied should be extractable as a stand-along section or set of Tables.
Public consultation	Kazakhstan has a consultation process but it involves the public sector and rarely a common citizen.	Public consultation is a requirement for WB. The World Bank has a mandatory 2 sessions for full EIAs and 1 session for category B projects. For full EIAs the sessions are scheduled to coincide with early EIA planning and the preparation of the draft EMP or record of likely impacts. For the B level projects a session during the impact definition stage is most useful, although exact timing is a function of the environmental issues emerging and the proponent's wishes. Consultations must be announces and for full EIAs advance notices of consultations and contact details must be published in the media for

		several weeks in advance of the session(s).
Classification	Projects are classified by the 5 danger levels with 1 being the highest as defined by norms and standards developed by the Sanitary and Epidemiological Services, in relation to human health and safety. There is little reference to protection of the environment and e.g., forests and wildife populations. As with the Banks, certain projects have been preclassified, e.g. the road projects are mostly considered Category 1 of requiring a full EIA.	Using a Screening approach the Bank completes an Integrated Safeguard Data sheet, where it examines general project effects in relation to relevant bank guidelines, called Operational Policies (e.g. OP 4.01 on Environmental Assessment). Categorization is based on screening results. There are 3 safeguards categories, C being the one without impacts, A the one with potential severe, large scale and irreversible impacts which cannot be avoided and are hard to mitigate.. The Bank also has a list of automaticA category projects.
Category C	A general equivalence for Category C would be KAZ Class 4 projects	These are projects where impacts are considered at a low enough level that neither a full EIA nor IEE or Abbreviated EIA is needed.
Document Form	Nothing specified other than a 'minor environmental statement'	No specific documentation required
Summary Doc	None defined	None required
Consultation \& information Disclosure Timing	None specified	Not needed
Disclosure	None required	None required
Category B: Initial Environmental Examination (IEE); Initial Environmental Evaluation (IEA)	A general equivalence for Category B would be KAZ Class 2 and 3 projects. Again there is no special name for this document other than the acknowledgment that it is at a lesser detail than for a Category 1 document and more detailed than a Category 4 document. The main difference is this document will be reviewed in the Oblast level of the Territorial Department of Environmental Protection. And this Category is not required (but recommended) to conduct the 5th stage of EIA	The Bank requires the Borrower to undertake an Initial Environmental Analyses (IEA), or Simplified Environmental Assessment (SiEA) of projects classified during the ISDS activity as ' B '.

or Simplified Environmental Assessment (SiEA) ;	process, namely the post-project analysis, 1 year after the end of project.	
		EIA ands EMP disclosed prior to project appraisal both locally in the country and in the World Bank's InfoShop. SiEAs do not require an analysis of alternatives
Document Form	All environmental assessment documents are stand alone reports	A section of the Feasibility Study
Summary Document	Each assessment document as its final section "Main conclusions of the EIA". No other summary was referred to in the Code or related standards	An executive Summary-but with no special designation
Consultation and Information Disclosure Timing	No consultation required	At least once during IEA/SIEA preparation
Disclosure	None required	All environmental assessment documentation is available on World Bank Information Centre website and in the borrowing country office as well, but there is no formal public review.
Category A: EIA	EIA is required for projects of Sanitary and Epidemiological class 1 , which will have significant impacts on the human safety. According to Section 26 of the EIA Instructions the third stage of EIA process "Environmental Impact Assessment" requires detailed analysis in full volume on all aspects of environmental impact of the specified objects, and includes the following components: air, water, mineral resources, production wastes, physical impacts, soil, plants, animals, socio-	The World Banks Category A requirements include environmental and social assessments. ElAs must also include a detailed analysis of alternatives, especially the "no project" alternative.

[^1]| | economic condition, and ecological risks. The Category A is required to
 undertake the $5^{\text {th }}$ stage of EIA process, Post-project Analysis, 1 year
 after the end of project. The $5^{\text {th }}$ stage should be undertaken by different
 licensed organization than which conducted the EIA. | |
| :--- | :--- | :--- |
| Document Form | Each stage of EIA process has its own stand alone document with
 prescribed format and the level of detail. | Stand Alone document with prescribed format and minimum level of detail |
| Summary
 Documentation | Each of 5 assessment stages has its own stand alone document; and
 each has a "Conclusions" section, which acts as a summary. | An executive summary is prepared and is attached to the EIA but often
 used separately. |
| Consultation
 and Information
 Disclosure
 Timing | No information on specific consultations, except for public hearing as
 part of the EIA - the Instructions for Public Hearing are publish by the
 MOEP Order No135, $7^{\text {th }}$ May 2007. | Minimum 2x mandatory, with timing specified. Once with the TOR for the
 EIA, once to present the draft EIA. For the disclosure of the draft EIA,
 Category A projects must be allowed a 120-day period for stakeholder
 evaluation and comments between disclosure of draft EIA/EMP and project
 appraisal. |
| Disclosure | From the time a full environmental assessment is submitted to the local
 loblast-level environment agency to the time it is reviewed by the
 central government is 60 days. During the first 30 days there is a
 theoretically a time for the "public" to comment. But since there is no
 real announcement this does not happen. Further, there is a 'public
 debate/hearing' held as part of the final EIA approval. Again, this is not
 transparent and the public are not necessarily involved. There is no
 other disclosure | The public must be informed about the availability of EIA documentation,
 which must be prepared in English and the local language (sometimes
 English, Russian and local language), and be accessible at convenient
 locations in country, at a published website and on the donors website
 (infoShop) 120 days before project appraisal. Loan processing cannot
 proceed during this period |
| CIA | | |

Figure 2-1 Ministry of Environmental Protection structure

3. PROJECT DESCRIPTION

3.1 Introduction

The section of the road funded by the World Bank passes through two administrative regions of Kazakhstan: South Kazakhstan and Kyzylorda Regions. The length of road within the South Kazakhstan Region is 294 km, including bypassing the administrative centre of the region Shymkent city. This part of the road falls into the first technical category (I) in accordance with national categorisation of highways.

The length of the road within the Kyzylorda Region is 810 km , including bypass of settlements representing district centres and the administrative centre of the region Kyzylorda city. This section of the road falls into the second technical category (II), except the East segment of the road between the border of South-Kazakhstan Region and Kyzylorda city, whose length is 226 km .

An overview of the upgrade works is presented in Table 3-1 and a description is given in App 1-1.

Table 3-1 Project overview

Location	Location	Comments
Shymkent Bypass (Category A)	$\begin{aligned} & (\mathrm{km} 2231+000 \text { to } \\ & 674 \mathrm{~km} \text { of } \mathrm{M} 39) \\ & \hline \end{aligned}$	Long bypass with flyover and clover leaf junctions with existing roads.
Ikan Bypass (Category A)	$\begin{aligned} & (\mathrm{km} 2123+000 \text { to } \\ & 2135+000) \end{aligned}$	Flyover at the contiguity section of the M 32 road with existing Turkestan bypass road at the 2114 km road sign and flyover at the contiguity section of the existing ikan settlement bypass road with the Ibata settlement.
Zhanakorgan Bypass (Category A) \qquad	$\begin{aligned} & \mathrm{km}(2010+000 \text { to } \\ & 2012+000) \\ & \hline \end{aligned}$	Zhanakorgan settlement bypass runs for approx 21 km , from 1986 km to 2007 km . \qquad \qquad \qquad
Shieli Bypass (Category A)	$\begin{array}{\|l} \text { (km 1934+700 to } \\ 1945+500) \\ \hline \end{array}$	11 kilometres length Shieli bypass from $1934(+700) \mathrm{km}$ to $1945(+500) \mathrm{km}$
Kyzylorda Bypass (Category A)	$\begin{array}{\|l} \text { (km 1808+000 to } \\ 1830+000) \end{array}$	The construction of a new Kyzylorda bypass includes: - tube-type flyover at the contiguity section of new Kyzylorda bypass with existing M 32 highway at 1830 km road sign; - clover-leaf flyover on intersection of new Kyzylorda bypass and R-68 "Kyzylorda - Aydarly" highway, at 23 km road sign; - clover-leaf flyover on intersection of new Kyzylorda bypass and "Kyzylorda - Dachnyi Massive" highway, at 25 km road sign; - tube-type flyover at the contiguity section of new Kyzylorda bypass with existing M 32 highway at 1808 km of road sign. Also includes construction of 8 underpasses and 4 bridges over Syr Darya River and Shirkelinsky channel.
Temirlanovka (A)		The original reconstruction project provides construction of

Location	Location	Comments
		2932 meter length overpass in Temirlanovka settlement (2221-2224 km), 4 underpasses, 6 bridges (1 suspension bridge) and renewal and reconstruction of 10 bridges. The overpass through Temirlanovka was rejected by local residents, an alternative bypass is currently under design.
Turkestan bypass (A)		Essentially online upgrading of the existing bypass of Turkestan.
Shagan Bypass (Category B)	$\begin{aligned} & (\mathrm{km} 1757+000 \text { to } \\ & 1767+200) \end{aligned}$	Shagan bypass from $1767+200 \mathrm{~km}$ road sign to 1757 km road sign.
Adjustment of Alignment (Cat. B)	$\begin{aligned} & (\mathrm{km} 1753+000 \text { to } \\ & 1754+600) \end{aligned}$	Straightening of the alignment in accordance with the design speed of $120 \mathrm{~km} / \mathrm{hr}$.
Akzarma Bypass (Category B)	$\begin{aligned} & \text { (km 1741+800 to } \\ & 1749+100) \end{aligned}$	Akzharma bypass from $1749+100 \mathrm{~km}$ to $1741+800 \mathrm{~km}$
Zhozhaly Bypass (Category B)	$\begin{aligned} & (\mathrm{km} 1634+000 \text { to } \\ & 1649+500) \end{aligned}$	15.5 km re-route around Zhosaly settlement.
Kazaly Bypass (Category B)	$\begin{aligned} & \text { (km 1470+000 to } \\ & 1476+000) \end{aligned}$	6 km re-route around Kazalinsk settiement.
Aralsk Bypass (Category B)	$\begin{aligned} & \text { (km 1350+000 to } \\ & 1361+000) \end{aligned}$	Aralsk bypass from 1361 till 1350 km . flyover and underpass over rail.

Detailed descriptions of the designs, alignment and construction aspects have not been provided by all DEs. To date only two DEs have provided sufficient information that would allow a detailed evaluation of design aspects as it will be progressing into the tender phase, such as the nature of the land affected and its usage, borrow pits, laydown areas and similar features. An overall description of the Project, divided into the lots/sections is presented in Appendix 4 and has been compiled from the Feasibility Study and extracts from the DE's submissions in December 2008.

However, that current state of information on the technical design allows a comprehensive analysis of impacts with sufficient detail to design mitigation measures, estimate costs and plan implementation arrangements which are descriptive, technically clear, comprehensive and extensive in their coverage. The detailed planning process will, however, be conducted by the contractors in form of lot-specific EMPs which will address environmental issues in small-scale implementation context.

There are essentially five types of work required to implement the Project, namely:

- road rehabilitation (same alignment, no widening) within the right of way (ROW)
- road widening (e.g. from 2 to 4 lanes), mostly within the ROW
- new construction on new alignment / ROW, e.g. bypasses
- major structures (underpasses, intersections, flyovers)
- major river crossings, bridge rehabilitation and new bridges

Each of the above categories is described below.

3.1.1 Rehabilitation of existing road

Rehabilitation of the existing road will occur in two situations, namely on-alignment rehabilitation of the existing road North of Kyzylorda (Category B) and along the existing road where new bypasses will divert through traffic away from the settlements to be bypassed. This essentially comprises removal of the existing wearing course (road surface), reconstruction or repairs to the road base to ensure sufficient compaction and the installation of a new wearing course (road surfiace, usually tarmac). No additional land take is required per se; as the road improvements are on the existing alignment. However, modifications will be made to the embankments, highway drainage infrastructure and cross drainage pipes and culverts. This work will require moderate amounts of additional infill materials and gravels for the road base and new asphalt materials for the wearing course. It is anticipated that signage and street furniture will be replaced or upgraded. All works of this type will remain within the existing right of way.

3.1.2 General highway upgrade

The design standard for the road is the SNiP, as this is the national standard; however it is recommended that some modifications are included to bring the design closer to international standards. Items which are recommended to harmonise with international standards include signage; livestock fencing; pedestrian safety through settlements comprising speed signage and overpasses or other safe crossing facilities, traffic calming; highway run-off collection and treatment to avoid land and water pollution.

The general highway upgrade for Category A sections involves widening from two to four lanes.

3.1.3 Bypasses, major structures, intersections, river crossings and bridges

The overall Project includes upgrading of two categories of road in accordance with the Kazakhstan highway network, namely Category I and II. The character of these roads is presented below.

№	Name of indicator	Category		
$\mathbf{1}$	Number of lanes	la	lb	II
2	Width of lane	4	4	2
3	Width of shoulders	3,75	3,75	3,75
4	Width of the shoulders strengthened	3,75	3,75	3,75
5	Width of demarcation strip without road fences	0,75	0,75	0,75
6	Width of safety lane of the separation strip	6,0	5,0	-

The following bypass works are to be implemented.
Shymkent Bypass (Category A)
(km 2231+000 to 674 km of M39)

Ikan Bypass (Category A)	(km 2123+000 to 2135 + 000)
Zhanakorgan Bypass (Category A)	$k m(2010+000$ to $2012+000)$
Shieli Bypass (Category A)	(km 1934+700 to 1945 + 500)
Kyzylorda Bypass (Category A)	(km 1808+000 to 1830+000)
Shagan Bypass (Category B)	(km 1757+000 to 1767+200)
Adjustment of Alignment (Category B)	(km 1753+000 to 1754+600)
Akzarma Bypass (Category B)	(km 1741+800 to 1749+100)
Zhozhaly Bypass (Category B)	(km 1634+000 to 1649+500)
Kazaly Bypass (Category B)	(km 1470+000 to 1476+000)
Aralsk Bypass (Category B)	(km 1350+000 to 1361+000)

The bypasses will be typically constructed on embankment and therefore elevated above the surrounding land; precise details for the individual sections are not currently available.

A number of major junctions are proposed, including flyovers for road intersections and clover leaf type junctions at intersections. The designs selected in the FS and currently progressed by the DEs are suited to high traffic levels and may in fact not be warranted presently due to relatively low traffic volumes. The World Bank may review the designs proposed and seek additional justification prior to financing these elaborate structures. One option may be for the MOTC to purchase the land required for the large intersections, whilst waiting for traffic levels to increase in the future that would justify their construction.

A number of new river crossings are proposed, mainly on bypass alignments and several bridges are to be strengthened and refurbished on their existing alignment.

3.2 Construction phase

The Project will be implemented by improving many sections of the road in parallel. The sections of the road will be advertised for international tender and it is feasible that international Contractors may bid for and work on several lots concurrently. An international Project Management Consultant (PMC) will be engaged to assist the MOTC/RC during Project implementation. At this stage the contractual arrangements are not known and the report therefore contains recommendations for working procedures that would adhere to best international practice and World Bank standards and procedures.

A large number of temporary workers will be required during the construction period and due to the international bidding procedures, it is anticipated that workers will include expatriates (managers and supervisors) and third country nationals (TCNs) and nationals for engineering design, manual labour, machine operation and other roles. Due to the large size of the project and the distances involved it is expected that a number of construction camps will be established. Details are not yet available regarding these camps, but one of the DE has identified the requirement for a camp and had made preliminary investigations as to its location. It is anticipated that as the designs progress more consideration will be given to the number and location of construction camps.

As mentioned previously, the Environmental Screening exercise conducted by World Bank as part of the Project evaluation categorised the sections into Category A and B, in recognition of the
potential environmental risk. Table 3-2 presents an overview of each lot, the types of works involved and the summary environmental risks.

Table 3-2 Overview of Project and Environmental Risk

Oblast	km	Category, Works type	Environment risk	Comments
	$2231-2260$	1		2932 meter long overpass through Temirlanovka
	$2231-674($ M39 $)$	I, 38 km long bypass	Medium	Traverses irrigated agricultural lands, has flyover and large intersection.

3.3 Operational phase

Accurate details of traffic forecasts have not been made available for this report, but indications are that following the upgraded highway, traffic levels will more than double and for some sections will increase up to five fold. Thus the road will become a major transit corridor with much higher traffic volumes and a particular increase in freight traffic comprising HGVs.

It is anticipated that there will be a noticeable element of induced development, particularly localised in the vicinity of bypasses, as development moves out to locate itself nearer the upgraded road. This may well promote land use change, which would then need to be effectively controlled by improvements to land use planning.

It is understood that road maintenance activities involving regular application of de-icing agents are very limited, as opposed to certain countries in the Western Europe and therefore saline run-off is not a particular issue. However, road run-off is estimated to be an issue that should receive particular attention in view of the traffic forecasts and the large distances involved that would severely limit timely incident response to diesel spillages or accidents involving hazardous materials.

It appears that several aspects of maintenance are dealt with to varying degrees along the route, with more formalised activities such as landscape planting and lighting in the South and much less attention given to these aspects in the North. The future maintenance schemes are not known at this stage, but it is recommended to include effective landscaping and landscape planting within the highway corridor for various environmental and social reasons.

The use of leaded petrol continues to represent an environmental and social impact form both highway run-off and from air quality effects from vehicle emissions. This report contains recommendations for ongoing monitoring following the upgrade of the road.

The national design standard (SNiP) currently contains no design specification for highway run-off and its treatment, to protect water, ecological or agricultural resources. Thus highway run-off, including that from vehicle accidents, has potential to damage land and water resources and recommendations are made in this report for run-off control and management.

[^2]
4. BASELINE DATA

4.1 Introduction

As a precursor to considering the potential impacts of the proposed highway improvement, an understanding of the environmental components likely to be affected is necessary. Information pertaining to environmental baseline conditions within the proposed Project Area was obtained through field visits, satellite images, internet searches, scientific journals and books, and from the Design Engineers' reports. The key sources of information for this ESIA are shown below in Table 4-1

Table 4-1 ESIA information sources

Information	Source
General conditions	Feasibility Study
Location specific information for km 1578-1702	DE Kazdorny
Location specific information for $\mathrm{km} 1980-2057$	DE Kazniipi Dortrans
Information from Archaeological Expertise for 8 out of the 12 sections.	Archaeological Expertise
Soil contamination and general condition, photos, video, supplementary materials including questionnaires and some public consultation.	Fieldwork and analysis by GeoDataPlus
Environmental Screening of route, bypasses and environmental and social conditions.	World Bank Missions (several 2007 and 2008)

4.2 Air and Climate

4.2.1 Air quality

Detailed information on existing air quality has not been available for this report, but calculation of harmful substances in the air was apparently carried out during the feasibility study stage. Consequently it was estimated that in general the quantity of toxic substances contained in exhaust gases is within the allowable concentration. However, along the highway passing through the settlements like Zhosaly, the city of Kyzylorda, Shieli, Ikan, Temirlanovka, Ak Biik, Shakpak Baba, B. Mamyshuly, where the buildings are located close to the road (at a distance of 5-35 meters), the content of nitrogen oxides almost reaches the set MAC standards (maximum-off).

4.2.2 Weather and Climate

The territory of the road sections subject to rehabilitation is significantly far from the Atlantic Ocean - the supplier of the wet air mass to the continent, which determines the high background of air and soil temperatures, continental climate and significant variations of weather conditions during the year as well as during the day.

The rivers of Syr Darya and Arys, running nearby, have some softening impact on the climate of this area. However, such impact is noticeable only within the range of floodplain territories.

A large inflow of the solar radiation, typical of this latitude, determines the high temperature of the air year round. Major temperature characteristics and dynamics of their annual changes are provided in Table 4-2:

Table 4-2 Average monthly and annual indicators of the temperature conditions, ${ }^{\circ} \mathrm{C}$

Average monthly and annual temperature of the air, ${ }^{\circ} \mathrm{C}$												
1	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	yr
-5,8	-2,8	5,3	14,5	21,3	26,8	29,5	27,1	20,3	11,1	2,6	-3,2	12, 2
Average maximum air temperature, ${ }^{\circ} \mathrm{C}$												
1	11	III	IV	V	VI	VII	VIII	IX	X	XI	XII	$\begin{aligned} & \text { Гo } \\ & \text { д } \end{aligned}$
1,2	3,7	12,1	21,7	29.0	34,5	37,0	35,0	28,8	19,6	10,0	2,4	19 5
Average minimum air temperature, ${ }^{\circ} \mathrm{C}$												
1	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	$\begin{aligned} & \text { Гo } \\ & \text { д } \end{aligned}$
-10,7	-7,8	-0,4	7,7	13,3	18,0	20,4	18,0	11,3	3,2	-3,3	-7,6	5,2
Absolute maximum/absolute minimum air temperature, ${ }^{\circ} \mathrm{C}$												
I	11	III	IV	V	VI	VII	VIII	IX	X	XI	XII	$\begin{aligned} & \text { Гo } \\ & \text { д } \end{aligned}$
18/-38	26/-40	31/-30	38/-10	41/-1	45/7	49/11	46/8	42/-2	37/-14	29/-32	21/-32	$49 /$ -40

South-Kazakhstan Region

Summer is very hot, lengthy and dry, with precipitation inadequate for the natural growth of green plants. Warm period lasts for about eight months- from mid-March to mid-November. The hottest month is July with an average temperature of $29,5^{\circ} \mathrm{C}$. Daytime can reache $37,0^{\circ} \mathrm{C}$ and at nights it drops to $20,4^{\circ} \mathrm{C}$. Occasionally, during some years, the absolute maximum temperature may reach $+49{ }^{\circ} \mathrm{C}$.

The winter is warm and short - about 3 months, from mid-December to mid-February-with frost rare, but the majority of days are sunny, frequent thaw, and snow-less. Snow-storms happen very rarely. Repetition of strong winds (over $15 \mathrm{~m} / \mathrm{sec}$.) is also limited. The lowest temperature may be noticed in January with an average monthly value of $-5,8^{\circ} \mathrm{C}$. Night air temperature falls up to - 10,7 ${ }^{\circ} \mathrm{C}$. The absolute minimum reaches $-40^{\circ} \mathrm{C}$.

A stable snow coverage in this area is not recorded, though some years were noticed to be snowy. The average height of the snow does not exceed 1-2 cm.

The number of foggy days is also insignificant. It makes only 20 days a year, and not more than 33 days in some of the years. More frequently fog happens in winter, but in average it does not exceed 6 days a month, with a maximum of 14 days a month.

Thunderstorms on the subject area are registered year round. More frequently thunderstorms are observed in summer - average of 3 days a month, and in anomalous years - 10 days a month. Thunderstorms are not observed only in December and January.

In general, high level of the solar radiation, severe summer temperature of the air, high level of relative humidity, absence of the atmospheric precipitates and frequent dust storms typical for this area create extremely difficult life conditions.

Kyzylorda Region

Harsh continental climate with hot summers and mild winters; dry, hot winds are frequent. The average air temperature in the region is $+8-11^{\circ} \mathrm{C}$. Annual amplitude average monthly air temperature (the difference between the average temperature in the warmest and coldest months) ranges from +28 to $-10^{\circ} \mathrm{C}$. The absolute maximum temperature is $46^{\circ} \mathrm{C}$, a minimum of $-38^{\circ} \mathrm{C}$.

The average rainfall per year ranges from 151-212mm. In some dry years can fall only $30-60 \mathrm{~mm}$, and most humid $200-213 \mathrm{~mm}$. The greatest decade elevation snow 5% provision of 20 cm .

The average wind speed ranges from $3-5 \mathrm{~m} / \mathrm{sec}$. The highest speed falls on the spring and winter months and reaches $6 \mathrm{~m} / \mathrm{sek}$. In the warm season, there are dust storms.

The wind regime on the subject Section is characterized by a clear prevalence of the eastern winds in winter, and northern, north-western winds in summer. The wind rose is provided in the Figure 4-1

Figure 4-1 Wind rose South-Kazakhstan Region

Figure 4-2 Wind rose Kyzylorda Region

Figure 4-3 Number of days with Dust Storms

The humidity climate in the village area is characterized by the low level of the sediments drop out (169 мм per year), their monthly maximum ($20-25 \mathrm{~mm}$) is mainly observed in spring and winter months: December - March, and the minimum - in late summer: August - September (1-2 mм).

Table 4-3 Average monthly and annual indicators of humidity

Average quantity of precipitates (MM).												
1	2	3	4	5	6	7	8	9	10	11	12	Yr
22	18	25	20	15	7	3	2	3	7	12	24	160
A relative humidity of the air (\%)												
1	2	3	4	5	6	7	8	9	10	11	12	Yr
81	78	68	52	39	28	26	28	32	49	68	81	
A number of days with a relative humidity of the air below 30%												
1	2	3	4	5	6	7	8	9	10	11	12	Yr
0.3	0.8	4.3	12	22	28.1	30.4	30	28.2	19.4	5.4	0.7	181.6

4.3 Land

4.3.1 Topography and landscape

The length of road under consideration in this report passes through two distinct eco-regions. The northern part (inclusive of all the Category B section), an approximately 800 km section from the Aktobe / Kyzylroda Oblast border to somewhere between Kyzylorda City and Turkestan City is characterized by arid, almost desert climate, sparse vegetation, hardly any year-round surface water courses (except Syr Darya) and large areas with (naturally) hyper-saline soils. Saksaul forests, which are adapted to dry, saline conditions with extreme temperature differences, play an important role in soil stabilization and erosion control, especially in the stretches between Kyzyiorda City and the Aral Sea and northwards to the Aktobe Oblast border. They constitute an important ecosystem and soil protection and stabilization element, but are not expected to be negatively affected by the project.

The landscape is generally barren, hardly vegetated and prone to wind erosion, dust generation and moving sand dunes, especially where overgrazed by livestock and burnt to induce new grass growth. Surface drainage functions mainly seasonally, when flash floods can occur and run-off waters can have a high erosion potential. The road roughly parallels the Syr Darya River as it runs North to the Aral Sea. In fact the road crosses the river at several places, but in most parts in several km to 10 s of km distance, staying well away from the irrigated farmlands along its shoreline. The landscape has a soft profile with wide valleys and basins, separated by slightly elevated plateaus. Land use is restricted to animal grazing, mostly camels, some cattle and horses, but with low intensity. Permanent settlements are extremely sparse and population density below 1 person / km2. The southern section (Category A) runs approximately 450 km from North of Turkestan southward to Shymkent City. This zone receives more precipitation, has a slightly more temperate and humid climate and is thus more productive and more densely populated (15-20 people $/ \mathrm{km}^{2}$). The corridor section in this zone passes through wide, flat basins and gently rolling hills, which get progressively flatter towards the North.

The natural vegetation is steppe, dominated by grassland with small clusters of forest near rivers and in valleys. The climate is still generally dry with precipitation concentrated over relatively short time periods in the spring and fall. There are a number of small intermittent tributaries to the Syr

Darya River, which cross the road corridor. The highway alignment is roughly $3-5 \mathrm{~km}$ North of and parallel with the Syr Darya River, then intersects with it near Turkestan and crosses several times further North. Between Shymkent and Turkestan the land is extensively used for agriculture and horticulture. North of Turkestan, the land use shifts to animal grazing as more arid conditions begin to prevail.

4.3.2 Geology and soils

The territory of the corridor from the city of Shymkent through the Kyzylorda city to the border with Aktubinskaya oblast has the following soil characteristic represented primarily by the plain zone; submontane and mountain zones.

Soils and vegetation of the plain zone

Brown desert-steppe soils occupy the northern subzone of the Eurasian desert zone and are confined to the increased relief elements of the inland plains. The vegetation of the brown soils is represented mainly by the wormwood associations (with a slight addition of halophytes in places), and by the steppificated associations in the most northerly belt of their areal. There are the yerkek communities (Agropyron sibiricum) met here on the light brown soils in places. The soil-forming materials are diverse by their mechanical makeup and lithology.

The humus content at the top is usually within the range from 1-1.5 to 2%, nitrogen content makes to 0.05 0.1%. The humus is principally humate-fulvate however with nearly equal content of the humic and fulvic acids on the top. The adsorption complex is saturated with calcium, partially magnesium and also with sodium for alkaline soils ($5-15$, up to 20%). The exchange capacity is $10-15 \mathrm{mg}-\mathrm{eq} / 100$ g . The reaction of soils is faintly alkaline and alkaline. The carbonate content $\left(\mathrm{CaCO}_{3}\right)$ is usually up to $1-3$, rarely 5% in the top. In many cases this figure is substantially larger in the alkaline soils and especiaily in undeveloped soils.

Light brown desert-steppe soils embed in the form of large solid masses on the ancient river terraces above the flood-plain of Syr Darya and Shu rivers, with the small spots among the graybrown desert soils in Betpakdala. The vegetation is mainly wormwood with small addition of halophytes in places.

Grey-brown desert-steppe soils are formed on the binomial deposits bedded by the surface rubbleloam (pebble) alluvium underlain by the drainage formations (rock debris, pebbles, gypsum, sand or crumbling dense rock) that increases in general the aridity of these soils. The total thickness of their soil profile is conditioned by the thickness of the silt rock alluvium which does not exceed usually $60-70 \mathrm{~cm}$. The gray-brown desert-steppe soils are developed under the perennial woodwormsaltwort pseudo steppe vegetation represented mainly by the woodworm associations with Salsola arbuscula or Salsola rigida.

Takyr-like soils formed mainly on the superglacial stratified ancient alluvial drifts of the various textures. The ground waters are medium deep ($6-8 \mathrm{~m}$, often $4-8 \mathrm{~m}$). The vegetation is thinned woodworm and halophytic-woodworm. The soil landscape keeps the features of the initial hydromorphic soils including the rusty, partly blue-gray gleyed spots and sublayers as well as the buried humic soil horizons.

Takyrs are formed in the desert zone, mostly in its southern subzone, in the enclosed depressions of mesorelief and microrelief as a rule under the influence of their repetitive slight flooding by the melt and rain waters as well as sedimentation of the roiled thin-layer deluvial deposit of spring floods. There are the blue-green algae and weak solonizations developed on it during the wet season period.

The same solonchak processes occur during the dry season. The takyrs have practically no higher plants.

Meadow boggy soils are developed in the relief depressions with the ground waters very close to surface ($0.5-1.5 \mathrm{~m}$) welling up to the surface in spring. The vegetation is meadow-bog (reeds, sedges, bulrush and rushes). The sod and peat-like horizons of the dark brown colour underlay at the top in $30-40 \mathrm{~cm}$. They pass into the brownish-gray horizon with many rusty and gray-blue gley spots below. The brownish-gray-blue gley horizon appears as a rule more deeply. Their total thickness amounts to $70-80 \mathrm{~cm}$ and more.

Alkaline lands are formed in the low lands with the usually high-salt ground waters close to surface (up to $2.5-3 \mathrm{~m}$). The vegetational cover is lacking sometimes but more often it is represented by the various halophytes. The alkaline lands are characterized by the accumulation of the ready soluble salts ($>1-2 \%$) on the surface or in the surficial horizon. Their humic horizon is usually underdeveloped however the humic horizon of the meadow alkaline lands is developed better. There are the inland solonchaks developing mainly against the salted ground waters close to surface. The coastal or lacustrine solonchaks forming on the low coastal (lacustrine) plains as a result of the periodical flooding of the seacoasts with the sea water (salty lake water) are distinguished among them. The coastal solonchaks are not analyzed in detail but there are the tidal marsh soils with thinned vegetation and humification signs distinguished in the upper horizons.

Soils of the submontane zone

Submontane light-chestnut soils occur mainly in the road section between Shymkent and Kyzylorda and to about $50-70 \mathrm{~km}$ North of Kyzylords. They are a group of soils developing in the submontane plains. The vegetation is desert-steppe, wormwood-feather-grass-sheep fescue and wormwood-sheep fescue. The soil materials are various - loess loams, ancient alluvial low-layered loamy, binomial loamy-cobble proluvial, loamy-pebble ancient alluvial etc.

The humus (nitrogen) content makes within the range from 2-2.5 till $3(0.07-0.15) \%$ on the surface. The soil reaction in the leached layers is nearly neutral; the reaction of the carbonate soils is alkaline. The ready soluble salts are not usually presented.

Submontane brown soils are met as the separate solid masses on the high submontane plains. They are formed under the coarse-grained ephemeroidal vegetation (bulbous barley, Agropyron villosus) with marked additions of the common mesophilous cereals (cocksfoot) and savanna-like tall grasses. The soil materials are the loess loams usually.

The humus (nitrogen) content is 4-7 (0.25-0.35) \% at the top of the lay land, on the old ploughed field it is $3-5$ (up to $0.2-0.25$) \%. The humus is humate-fulvate. The adsorption complex is saturated with calcium and magnesium in part.

Submontane gray-brown soils are frequently met in the upper belt of the submontane plains. They were formed under the coarse-grained ephemeroidal vegetation (Agropyron villosus, bulbous barley) and savanna-like tall grasses. The soil materials are represented by the heavy loess loams mostly.

The gray-brown soils have the middle or deep thickness of the humic horizons. There is the gray or dark-gray grainy-lumpy humic-accumulative horizon ($A=20-22 \mathrm{~cm}$) distinguished at the top and the brownish (gray- or greyish-brown) lumpy-nutty clayed transitional humus horizon ($B=$ up to 4070 cm) below. There is at first the small intermediate level (BC) at larger depth and the whitish-yellow dense carbonate- alluvial layer ($\mathrm{C}^{\text {k4 }}$) with the numerous blooms of carbonates (mouldiness, veins, lime
nodules) below which runs into the depth of up to $150-180 \mathrm{~cm}$ and interchanges with the original loess loam (C).

The described soils contain the 2.2-3.5 \% of humus and 0.15-0.2 \% of nitrogen at the top of the lay land and on the old ploughed field -1.8-2.8 and 0.12-0.16 \% correspondingly.

Submontane common gray soils and light, northern serozems are widely spread on the submontane, partly foothill plains. The common gray soils occupy the upper, well watered belt of the gray soil zone; the light serozems occupy the lower belt.

On the submontane plains the soil materials for them are the loess loams, on the foothill plains the binomial loamy-cobble (pebble) alluvial-proluvial and deluvial- proluvial drifts. The deluvialproluvial drifts are the pebble or cobble-loamy on the top and are underlain with the pebble or cobble.

Soil contamination

Contamination of land and water by road traffic emissions is a cumulative phenomenon and depends on the number of vehicles, their speed and condition and the fuels utilised. Contaminants are know to accumulate in the soil over time and can be present for decades. Potential issues include possible contamination of soil resources that represent a hazard to workers during construction and contamination of additional land and water through increase in traffic levels and through use of new routes such as bypasses. The contaminants, particularly metals that accumulate in the soil are readily absorbed by many plants, then can move through the food chain and get into animals and humans. Some metal components are dissolved and are carried away by the drainage waters and then contaminate rivers and water reservoirs and can eventually enter drinking water supplies.

According to the applicable norms and SNiP in Kazakhstan there is no real design standard for treatment of highway runoff. It is recommended in this study to consider the collection and treatment of highway runoff, with a particular priority in sensitive water areas and in proximity to irrigated agricultural lands. This should include aspects of design and cleaning/maintenance of the road drains, applying international design principles including oil/water separators in road drainage, attenuation of runoff in containment basins and spill response strategies for material such as diesel.

Lead is considered the most frequent and toxic transport pollutant due to its prevalence in many of the fuels used in the country. It is referred to the prevailing elements: its average world clarke (background matter content) in the soil is $10 \mathrm{mg} / \mathrm{kg}$. The lead content in the plants (on dry weight basis) comes up to the approximately same level. The general sanitary criterion for lead in the soil is a maximum permitted concentration (MPC) of $32 \mathrm{mg} / \mathrm{kg}$.

As part of this study GeoData conducted a soil contamination survey (see App 8-2) the findings of which are presented below.

Lead content of the soil surface at a distance of up to 50 m on both sides was up to $900 \mathrm{mg} / \mathrm{kg}$ within the vicinity of lkan settlement. The largest values were observed at a distance of 30 m from the road edge. This is most likely due to the fact that following the series of observations, about 25 $\%$ of the total amount of particulate emissions remain on the road surface until they are washed off and 75% is dispersed on the surface of the adjacent areas including the road shoulders. Depending on the structural shape and extent of the accumulation $25 \%-50 \%$ of the particulate matters get into the runoff and contaminate the surrounding soil.

An exceeding by up to 10 times the MPC was also noted with respect to cadmium within the same areas. For oil products indications were that the MPC was exceeded by up to 240 times. This was
observed mainly at a distance of 10 m from the trafficked route, in the area of Ikan settlement as well as in the area of the city of Kyzylorda. The contamination of nearby water bodies occurs as a result of the ingress of the road traffic emissions onto the land surface, into the drainage basins, in the groundwater and directly into the surface waters. The ingress of oil products into sensitive waters is of particular concern.

According to the analytic research undertaken of the surface-water bodies in the area of Shymkent and Kyzylorda cities, the content of heavy metals was within the MPC, however for oil products the MPC was exceeded by 1.5 .

Following the contamination survey it is recommended to conduct additional sampling for land and water at potentially sensitive areas, for example, Turkestan city, Ikan settlement, Shymkent and Kyzylorda cities.

The data collected were representative of existing traffic levels, which are up to five times less than the estimated future traffic levels for the transit corridor. Therefore during construction and operation it is recommended to develop a system of monitoring for soil and water in the area of Shymkent at the beginning and at the end of the new bypass, in the area of Ikan settlement and the city of Kyzylorda. It is also recommended to establish monitoring stations for surface waters within the intersection of the road with the large water bodies such as Arys River and Syr Darya River.

4.4 Noise

In general the majority of the route of the road experiences low noise levels, due to the rural landscape and relatively low traffic volumes. No noise sampling was undertaken as part of this study and no relevant data were found to be available. In accordance with the order of the Ministry of Health of the Republic of Kazakhstan № 841 dated to 03.12.2004 the level of traffic noise should not exceed 70 dBA.

The estimation made on the feasibility stage study showed that a noise level at the distance of 10 25 meters from the carriageway equals to 71.2-75.2 dBA, which slightly exceeds a local health standards.

4.5 Hydrology and Hydrogeology

About 90% of the Republic of Kazakhstan's territory can be classified as arid zone with low humidity and limited water resources, with evaporation exceeding precipitation in the annual balance. Average water availability is $20,000 \mathrm{~m}^{3} / \mathrm{km}^{2}$ and is thus one of the lowest in Eurasia.

The total surface water resources of Kazakhstan for a year of average humidity are $100.5 \mathrm{~km}^{3}$ from which $56.5 \mathrm{~km}^{3}$ are formed within the country with the rest coming from China, Uzbekistan, Kyrgyzstan and Russia. Surface water resources are distributed irregularly: in the eastern part of the territory 34.5%, northern part 4.2%, central part 2.6%, south-east part 24.1%, southern 21.2% and western part 13.4%.

The flow of rivers shows strong seasonal fluctuations due to precipitation and melted snow being the main contributors to surface water courses. The run-off rates are highest in spring ($80-90 \%$), with the biggest discharge taking place in April-May. There are many temporal watercourses of very short duration of any flow. In summer precipitation does not play any role in river water supply.

The hydrographical network on the territory of South Kazakhstan (in which the project corridor is situated) is distributed unevenly. The river network is denser in the mountainous part of the area. On the plains the surface drainage network is characterized by widely spaced, sparse, often only
seasonally water bearing rivers and creeks. In the semi-desert zone further North there is practically no hydrographical network. The Syr Darya River, the basin which includes all other rivers is the main drain of this area. Arys River is the most important tributary to Syr Darya and joins at km 1381 km from the source. Syr Darya River runs within a wide floodplain, forming multiple meanders, dead-waters, channels and former river-beds.

The basin of the Syr Darya River is located in the grid square of $39^{\circ} 23^{\prime}-46^{\circ}$ North latitude and $61^{\circ}-78^{\circ} 24^{\prime}$ East longitude. It trends from North to South for 800 km , and from West to East it stretches for 1600 km . The length along the river bed from the outflow to the maximum distant point of its river system is 3019 km .

The river runs through the territory of four Central Asian countries (Kyrgyzstan, Tajikistan, Uzbekistan and Kazakhstan). There are 497 permanent tributaries in length of 10 km and more present in its basin. The total length of the rivers is 14750 km . The area of the river's catchment basin is estimated at $462,000 \mathrm{~km}^{2}$.

The main source of water replenishment for all rivers of South Kazakhstan, as well as groundwater is the water from melted snow and rain, which determines the volume of the seasonal and annual flow. Because the flow of many rivers is intensively used for irrigation and other economic activities their annual drainage pattern may be highly altered. Many of the smaller tributaries, except for Arys River, are dry most part of the year, especially in the lower parts of their course.

Existing impacts on the hydrographic network and natural runoff patterns due to poorly controlled irrigated agriculture are observed all along the course of Syr Darya. The use of modern fertilizers and pesticides on the large irrigated lands is impacting surface and groundwater quality.

There is an intense network of irrigation canals and waterworks in the wider project area, which are currently crossed by the highway alignment in multiple locations. The main river regulation works for Syr Darya are the Chardara water works and related channels near Kyzylorda.

Investigations by GeoData indicated that the Kazakhstan law specifies that every surface water body has a certain boundary of general protection. The Ministry of Environment specifies the level of protection and dimensions of the protected areas. The area in and around Kyzylorda by-pass, where some wetlands are located on the future bypass alignment, is not knowingly being considered for any special or legally protected status.

Water for irrigation is charged, there are tariffs for surface and ground water and various economic branches, but it is imperfect and does not provide incentives for water saving by water users.

Practically over all territory of the country water situation is tense that is caused by lack and pollution of water resources. Imbalance between environment and anthropogenic load has led to ecological deterioration in all basins of the country. Syr Darya basin is characterized by complicated situation especially in lower reaches with irrigated lands expended in middle reaches and water diversion increase for this purpose. River flow reduction and pollution has led to ecological degradation and population living standard lowering. Ongoing desertification processes affect 2 Mill hectares and 6 Mill ton of salt are precipitated annually by Aeolian trabsport over the project area and beyond, mainly originating from the Aral Sea basin area..

4.5.1 Kyzylorda Oblast

The entire Kyzylorda oblast is situated in the Central Asian internal basin, more specifically in the basin of Syr Darya River, which drains into the Aral Sea. Other rivers in the Kyzylorda Oblast are mainly of a seasonal nature and do not exhibit perennial flows. The largest of these temporarily
active drains are Besaryk, Tules, Zhideli, Akuyuk, Shulak, and others which are water-bearing mainly during periods of floods and precipitations in spring. Due to the flat terrain and very shallow gradient, the course of Syr Darya River strongly meanders and forms many oxbow lakes and deadwaters (the largest being Zhaksykylysh, Kamystybas, Arys, and Ashikol). Before reaching Aral Sea Syr Daria forms a narrow Delta without extensive wetlands.

Ground water levels in Kyzylorda Oblast range from 2-7 m, in some areas the levels can be much shallower, however, and local seepage above ground is also observed in depressions, some of which lie close to the existing alignment. The near surface groundwater is generally highly saline and is not used for irrigation or human consumption, frequently however for watering livestock. Besides these seepages there are frequent artesian sources with discharge rates of 5-50 $1 / \mathrm{s}$ from a deeper aquifer characterized by playa type groundwater which is situated at a depth of $10-30 \mathrm{~m}$ below ground surface. These waters are strongly mineralized and show high salinity, and no artesian wells are found near the road alignment.

4.5.2 South Kazakhstan Oblast

The river network in this Oblast is distinctly denser and contains more perennial rivers than further North in Kyzylorda Oblsat. The main drain is Syr Darya River, which flows into NW direction. For several 100 s of km it parallels the Karatau mountain range to the NE from which several of the perennial tributaries originate. Moving away from the mountains and towards the North, where morphology is progressively dominated by wide plains, the river network becomes sparser and many drains are seasonal rather then perennial.

All rivers in the Oblast belong to the basins of either Syr Darya or Chui, the much larger area falling into Syr Darya basin and only a small part (rivers on the north-eastern slopes of the Karatau range) - belong to the Chui basin.

Syr Darya as the largest river of the region forms a central hydrographical axis which has shaped the socioeconomic and geographic pattern of the Oblast. Agriculture, settlements and transport routes are concentrated in a corridor of several 10 s of km width on both sides of Syr Darya, the infrastructure includes the project's road alignment, a railway line and a network of roads and water regulation and irrigation works. - As virtually all tributaries are joining Syr Darya on the orographically right hand side (north-east) economic activities, infrastructure and population are distributed with a bias to this north-eastern side of the river valley. The first tributaries in the Oblast which are crossing the alignment on their path towards Syr Darya start near the Western Tien Shan range, the largest of them being Chirchik River (with secondary tributaries Chatkal, Pskem, and Ugam), Keles and Arys (with secondary tributaries Borolday and Badam). Smaller rivers are the Bogen, Chayan, Karachik, and other minor streams, which often dry up seasonally.

The are only few and shallow lakes in the region which are not affected by the alignment; the largest of them are Akzhaykyn, Akzhar, and Kaldykol.

4.5.3 Groundwater

The subterranean waters (groundwater, GW) of the area of the road corridor from Shymkent city to the border of Aktobe oblast are described in terms of main aquifer horizons and complexes and major hydrogeological structures. For a graphic representation a hydro-geological map is attached as Appendix 5-9.

The main part of the area belongs to the Syr Darya Basin Complex, comprising various aquifer types including stratiform, confined block-type, non-artesian and artesian. This structure is the main hydrogeological feature relevant for the project area.

It is located in a large tectonic syncline which morphologically forms the large basin of the Syr Darya River reaching from the Fergana valley in the South to the and Aral Sea in the North.

The basin is formed by the gently folded and faulted Mesozoic and Cainozoic formations which are overlying a highly metamorphic, intensely folded Palaeozoic basement complex. The vertical depth of submergence of the hydrogeological complex varies within the range of $500-2,000 \mathrm{~m}$. Structural and lithological properties allow a subdivision of the Mesozoic-Cainozoic complex into two hydrogeological units: (i) the upper non-artesian groundwaters of neogene-quatemary age and (ii) the lower artesian waters which are presumed much older.

The non-artesian waters are contained within the "Kyzylkum" sand layers of neogene-quaternary age, which forms the present-day plain of Syr Darya River. The flow of the subterranean waters is directed north-westwards, from the Kyzylkum plain to the present river valley. There is no continuous groundwater flow-path to Aral Sea.

The main resources of the groundwater are associated with the quaternary alluvial, neogenequatemary and cretaceous aquifer systems, these are of economic importance for the region. These sediments form the alluvial plains and terraces above the flood-plain of present day water courses. They comprise a sequence of sandy materials and sandstones. The largest thickness of this alluvial layer (up to 30-40 m) was registered in the valley of Syr Darya River and within the areas of the fossil river channels of Kuvandarya and Zhanadarya. The depth of the groundwater surface in this aquifer varies from 1 to 8 m below ground level.

In the fossil river channels with coarser materials groundwater is extracted from wells, which can yield $10-25 \mathrm{l} / \mathrm{s}$. The reservoir properties of these zones are good enough for groundwater extraction on an economic scale, with filtration coefficients up to $27 \mathrm{~m} /$ day and coefficients of transmissibility of $50-200 \mathrm{~m}^{2} /$ day. The salinity of subsurface water is highly variable and ranges fro 0.5 to $65 \mathrm{~g} / \mathrm{dm}^{3}$. A salinity of $0.5-1 \mathrm{~g} / \mathrm{dm}^{3}$ with the hydrocarbonate and sulphate-hydrocarbonate calcium-sodium chemical composition prevails in the floodplains.

It needs to be recognized, however, that these hydrogeologically beneficial properties exist mainly in the fossil and current river channels were higher transport energies have created grain size distributions towards coarser fractions (sand, gravel). The plains and plateaus between the river valleys are characterized by finer lithologies, with fine sands and silt prevailing, which have distinctly lower permeability's and transmissivities.

Near the coast of the Aral Sea the ground composition is more and more influenced by evaporites, such as gypsum, halite and a variety of other salts which have been deposited as chemical sediments after evaporation of the aqueous solutions. As evaporites are often groundwater barriers the aquifer system are confined to marine quaternary sediments. The groundwater near Aral Sea is characterized by salty and bitter brines, containing sulphates and abundant sodium-chloride.
Aquifers of Pliocene-quaternary sediments are developed practically over the whole territory. They are generally covered by aeolian sands enabling seepage and accumulation of meteoric waters. The thickness of this upper aquifer varies within the range of 0.2-47 m. The filtration coefficients amount to $0.1-1.0 \mathrm{~m} /$ day. The well yields in the Aral Sea region do not exceed $0.5 \mathrm{l} / \mathrm{s}$ usually; in the eastern part of the basin yields are $3-7 \mathrm{l} / \mathrm{s}$, with most wells in the range of $2-4 \mathrm{l} / \mathrm{s}$. Groundwater is mostly brackish with mineralization of up to $3 \mathrm{~g} / /$; the salinity is $10-30 \mathrm{~g} / \mathrm{in}$ the Aral Sea region. The
chemical composition of water is mostly characterized by hydrocarbonate, sulphate and chloride, and Calcium and Sodium.

The aquifer is widely underlain by Palaeogene and Neogene (marine basin type) clays which act as groundwater barrier. Their thickness varies from 10 to 180 m . In a structure called Lower Syr Darya anticlinal fold numerous outcrops of these Palaeogene clays can be observed.

Bordering the project area to the South-East the Zhetysu-Tienshan Complex is located. This orogenic region is associated with folded Palaeozoic bedrock which includes a series of large intramontane basins with Mesozoic and Cainozoic sediments. The region consists of four major basins, one of which lies within or close to the project area: The Central-Tienshan basin (VIII-2) which drains westwards towards the Syr Darya River.

This basin contains mainly aquifers of fractured rock type comprising both artesian and unconfined groundwater reservoirs. Host rocks are generally highly metamorphic, deformed and fractured crystalline basement rocks of Hercynian age, as well as intramontane basins containing younger sedimentary series of the Jurassic, Cretaceous, Palaeogene and Neogene.

The older metamorphic rocks host groundwater mainly in fissures, joints and fractures, as well as karst systems, while in the intramontane basins porous aquifers dominate. The water retention capacity, permeability and conductivity of the Pre-Palaeozoic and Palaeozoic formations is determined by the degree of fracturing and resulting open discontinuities as well as karst cavities. Groundwater is most abundant in zones associated with large tectonic faults and karstic phenomena in the carbonate rocks.

The water content of the unconsolidated Mesozoic and Cainozoic sediments depends on their lithological composition and granulometric distribution. However, these aquifers are of minor importance in the basin due to their small area size and the small thickness of the aquiferous strata. Well yields in these younger sedimentary basins usually do not exceed $3-4 \mathrm{l} / \mathrm{s}$. The mean salinity is $0.4-0.6 \mathrm{~g} / \mathrm{l}$. The chemical type is generally hydro-carbonate calcium-magnesium waters.

Depending on topography the depth of the ground water surface ranges from $11-94 \mathrm{~m}$ in the plateau and hilly areas; in the river valleys their level is $3.0-1.5 \mathrm{~m}$ below ground level. These waters are formed in a zone of active replenishment by freshwater from precipitation and snowmelt, thus low salinity waters (up to $0.5 \mathrm{~g} / \mathrm{l}$) of hydro-carbonate calcium-magnesium type dominate. The groundwater flow direction goes towards the adjacent basins / plains of Syr Darya and Chui-Sarysu.

Due to intrusions of varying ages into the Pre-Palaeozoic and Palaeozoic base rock formations the basin is highly inhomogeneous. Thus the yields of wells and springs vary within a very large range of 0.2-92 l / c. Groundwater is replenished mainly by atmospheric precipitation, glacial and snow melt.

4.5.4 Key Hydrogeological Features of the Project Area

Over most parts the alignment runs in the Syr Darya Basin. To the South and South-East the Zeytsu-Tien-Shan Basin borders, however its hydro(geo)logical influence on the project area is small.

The surface water network of the project area is generally sparse. There are about 10-20 natural river courses crossed by the Alignment in the South Kazakhstan Oblast and significantly less in the Kyzylorda Oblast. Around the city of Kyzylorda the alignment runs through irrigated agricultural land for several 10 s of km . To the north of the Kyzylorda Oblast the river network becomes extremely sparse. Natural wetlands occur in small patches along the alignment in a few areas, but only near Kyzylorda City the alignment of a new bypass will actually cross a wetland area.

In the Syr Darya Basin there is an unconfined near-surface aquifer consisting of porous materials, mostly fine sand and silt. The groundwater of these near surface aquifers is unprotected from surface influence and will be replenished mainly by seasonal precipitation and snowmelt, although artesian contributions from lower aquifers are also possible. Near (active and fossil) river channels and valleys coarser materials occur, where economic water extraction is possible. These zones / corridors are usually restricted to no more than several 100 s of meters in width.

Deeper groundwater layers are of the confined type (i. e. lying under / between impermeable strata) and separated from the near surface aquifer by a sedimentary series of marine clays, which act as effective groundwater barrier and prevent the vertical migration of potential contaminants. Artesian waters generally originate from these deeper aquifers below this clay barrier.

Due to the high evaporation ratio and the poor drainage of the wider region (Aral Sea Basin) the groundwater of the project area tends to be naturally elevated in salinity and mineralization, which restricts groundwater use for agricultural purposes and as drinking water. Sulphate content $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ may need to be considered for some sections of the project area due to its corrosive properties for concrete, e.g. in foundations, piles and other structures in contact with GW.

Existing impacts include elevated concentrations of heavy metals (especially lead) in the immediate vicinity of the road, as well as wide spread elevated concentrations of Nitrates $\left(\mathrm{NO}_{3}{ }^{-}\right)$and chemical compounds occurring in fertilizers and pesticides. However, no comprehensive investigations and detailed data exist on these issues.

Usability and utilization of the uppermost aquifer is deemed low. Due to the fine matrix of the ground permeabilities and corresponding flow velocities are low, as well as the gradients of the groundwater surface. Deeper aquifers are shielded and isolated by low permeability geological strata and often pressurized, leading to artesian conditions. Thus a correspondence between the uppermost aquifer and any deeper groundwater bearing strata is considered highly unlikely. The economic potential of the uppermost aquifer is very low (see Annex 5-9) mostly with sustainable potential yields of below $1 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$. Economic scale water extraction is not undertaken from the uppermost aquifer level.

Overall the potential for impacts on groundwater quality and the project area's hydrogeological conditions is deemed very low.

4.6 Ecology and biodiversity

4.6.1 Flora.

There are no legally protected areas or habitats of rare/endangered species affected within the Project site, nor were any such sites currently under consideration for such legal status at the time of project planning. See also Section 4.3.2, soils and vegetation.

4.6.2 Fauna

Kyzylorda Oblast

According to phyto-geographical zoning, Kyzylorda Oblast is located in the Asian arid region which is in the Iran and Turan subregion of the West-Northern Turan Province, and part of it lies closer to the boarder of the South-Kazakhstan Oblast in the Northern Tien Shan Province.

Vegetation is represented by diverse edaphic species, which are dependant on the soil type. Pelophytic (clay loving) species predominate (42.3%) as well as other plant assemblages
whose distribution is dependant on factors such as salinity and specialisation to hostile conditions such as aridity, minimal soil cover and exposed rock.

Homogenous vegetation deserts (20.6\%) occupy vast areas to the east of the Aral Sea and the Caspian Lowland. Sand massifs and Kazakh Upland are largely represented by a small number of highly adapted species. Homogenous cover of Anabasis salsa, A. aphylla and Haloxylon aphyllum on desert loam soils is typically widespread.

Perennial halophytic (Anabasis sa/sa, A. aphylla, Atriplex cana) and annual halophytic species (Climacoptera brachiara, Salsola foliosa) in deserts also occupy large areas in the Ural Plateau of this sub-zone and predominate in combination with Artemisia semiarida and A. terraealbae species in loamy saline lowlands.

Vegetation in the Northern Tien Shan Province is represented by frutescent (shrub-like) deserts with ephemerals, steppe-like deserts with herbs (Stipa sareptana, S. Richteriana) and ephemerals (Poa Bulbosa).

Lands are largely used for pastures and are only partially suitable for agriculture, depending upon the relief.

South-Kazakhstan Oblast

Vegetation is diversified as well as soils: the zone is represented by deserts, semi-deserts and mountains.

According to phyto-geographical zoning, the highway is located in the Asian arid region which is in the Iran and Turan subregion of the West-Northern and Karatau Province - submontane shortgrass semi-savanna.

The lower level of vegetation is formed by ephemeral and wormwood submontane deserts; the upper level is formed by ephemeroid and ephemeral species where Poa bulbosa, Carex pachystylis and C. physodes predominate (in sands). Submontane deserts relate to various geographic variants of Central Asian type: West Tien Shan, Altay, and Fergana. The most typical in the Province are ephemeroid and sprawling Artemisia species submontane deserts (Artemisia diffusa, Poa bulbosa, Carex pachystylis), whereas hilly and ridge sands are covered by ephemeroid brush and ephemeroid white saxaul. Bottom vegetation abounds in species composition thanks to supplementary humidification by surface and rain waters. The aforementioned groups of species are admixed by meadow species: bluegrass (Agropyron), milfoil (Achillea millefolium), liquorice (Glycyrrhiza), etc.

Elevated foothill plains - consisting mainly of loess - are covered by short-grass ephemeral sedgy bluegrass (Poa) species, often mixed with perennial herbs (such as Phiomis, Cousinia, Eremostachys, etc.) or hemi-ephemeroid tall-grass (such as Ferula, etc.). Most stony areas are covered by ephemeroid and wormwood (Artemisia) species with domination of specific Seriphidium-type wormwood which is not typical for desert species in lowlands (Artemisia tenuisecta, A. haratavica, A. valida, A. namanga-nica, etc.), and sometimes can be mixed with petrophilous brush (such as Amygdalus, Atraphaxis).

Karatau mountainous Sub-Province differs by its specific fauna and vegetation as well as by distinctive zonality which includes sub-mountainous deserts; Karatau Egnatioides zones with ephemeroids, steppe herbs and phryganoid subshrubs (Artemisia haratavica, Poa bulbosa, Rheum maximoviczii, Festuca valesiaca, some types of Lepidolopha species and others); steppes with phryganoid sub-shrubs and ephemeroids (Festuca valesiaca, Stipa
caucasica, Lepidolopha karatavica, Ferula haratavica). Vegetation cover in all zones is largely represented by petrophytic thorns, suffruticous and thorn-grass species which have been referred by Kamelin R. $(1979,1990)$ to phryganoid types. Such species are formed by Lepidolopha gomolitzkii, L. krascheninniko, Rhaphidophyton regelii, Jurinea suffruticosa, Cousinia mindschelkensis. Syr-Darya Karatau mountains still preserved rare and original vegetation species such as: Pyrus regelii light forests, Fraxinus sogdiana and Populus berkarensis flood-plain forests and Spiraeanthus schrenkianus brush species of relict types. The majority of species are endemic to the Syr-Darya Karatau ridge.

Winter grains (wheat, barley), Lucerne (Medicago sativa), carthamus (Carthamus tinctorius) are cultivated from domestic plants; corn, cotton (Gossypium) and cucurbits crops are cultivated in irrigated areas. The most common weed species are oxtongue (Picris), Aleppo grass (Sorghum halepense), corobind (Convolvulus arvensis), Cynodon (Cynodon dactylon), and cane (Phragmites).

A small massif of forest-meadow soils under tugai vegetation is in the Tamerlanovka region, Arys River bottom-land.

Wildlife

Wildlife in the Kyzylorda Oblast is not characterized by a high diversity species and subspecies. In the region of the highway, gnawing animals (Rodentia) are abundant: ground squirrel (Citellus), jerboa (Dipodidae), gnawer beetles (Trogidae), and field mouse. Hedgehogs (Erinaceus) and shrew (Soricidae) are known from the insect-eating animals; reptiles are represented by copperhead snake (Agkistrodon), viper (Viperidae), and lizard (Lacertilia).

Significant amounts of various bird species inhabit Kazakhstan, including permanent and temporary nesting and migratory birds.

Birds in the Kyzylorda Oblast include: black-necked (Podiceps nigricollis) and little (Podiceps ruficollis) grebes, big and little gannets (Phalacrocorax carbo, Ph. pygmaeus), curly and European white pelican (Pele-canus crispus, P.onocrotalus), spoonbill (Platalea leucorodia), glossy ibis (Plegadis falcinellus), houbara (Chlamydotis undulata), thick-knee (Burhinus oedicne-mus), whitetailed lapwing (Vanellochettusia leucura), brown pigeon (Columba eversmanni), ringdove (Streptopelia senegalensis), saxaul desert jay (Podoces panderi), saxaul sparrow (Passer ammodendri). The region is mainly represented by marbled duck (Anas angustirostris), blue-dun screech owl (Megascops), Egyptian nightjar (Caprimulgus aegyptius), Menetrie's warbler (Sylvia mystacea), pied chat (Oenanthe picata), pied bushchat (Saxicola caprata), pre-Asian trumpeter bullfinch (Bucanetes githagineus), harrier eagle (Circaetus gallicus), booted eagle (Hiera-eetus pennatus), golden eagle (Aquila chrysaetos), lammergeyer (Gypaetus barbatus), neophron (Neophron percnopterus), vulture (Aegypius monachus), griffon (Gypsfulvus), snow cock (Tetraogallus himalayensis), chukar (Alectoris chukar), crimson-winged finch (Rhodopechys sanguinea), green linnet (Chloris Moris), white-capped bunting (Emberiza stewarti). Moreover pheasants (Phasianidae), ducks, geese, cormorant (Phalacrocorax), and sandpiper (Actitis hypoleucos) are encountered.

Wildlife of the Kyzylorda Oblast currently comprises 32 identified mammal species. Examples are: jungle cat (Felis chaus), wolf, fox, hare, and boar.
"Specific" species for the region are tawny owl (Stric Aluco), Hume's short-toed lark (Calandrella acutilostris), orphean warbler (Sylvia hortensis), Subalpine warbler (Sylvia cantillans), paradise flycatcher (Tersiphone), white-throated Robin (Irania gutturalis), black-breasted tit (Periparus
rufonuchalis) and yellow-breasted tit, crimson-winged finch (Rhodopechys sanguinea), Turkestan greenfinch, and white-capped bunting (Emberiza stewarti).

Red List animals.

Saiga (Saiga tatarica). The major portion of the present range of the species is found on the territory of Kazakhstan (80-85\%). Three different populations of Saiga dwell in Kazakhstan: Betpakdala saiga (between the Balkhash Lake and the Aral Sea), Ustyurt Saiga (between the Aral and the Caspian Seas) and Ural Saiga (between the Volga and the Ural Rivers). In winter part of the Ustyurt population migrates to the south, to neighbouring Uzbekistan and to a lesser extent to Turkmenia; Ural Saiga migrates to Russia and in spring migration move in the opposite direction to the Republic of Kazakhstan. The geographic range of Saiga has decreased significantly over recent decades and are very scarce in Chuya Muyunkums, northern and southern Pre-Balkhash, the larger part of Aral Karakums and the east coast of the Caspian Sea. All three Kazakh populations are even more isolated territorially.

Marmot (Marmota menzbieri). The worldwide geographic range consists only of three isolated species in Western Tien Shan: Chatkal and Kuramin marmot (Uzbekistan and Kyrgyzstan) and Talass marmot (Kazakhstan). Talass geographical range, which is about 400 sq km , is solely in the South-Kazakhstan Oblast and occupies the north-eastern end of the Karzhantau ridge and adjacent part of the Ugam ridge. The northern boundary of the geographical range of the Marmota menzbieri in Kazakhstan reaches $42^{\circ} 10^{\prime}$ Northern latitude; eastern range $70^{\circ} 00^{\prime}$ East longitude; and western is $70^{\circ} 30^{\prime}$ East longitude. Three basic territorial groups are distinguished: Badam marmot (Badam River basin; Badam River watershed - Ugam River and its inflow - Aygyrdzhikhan River; Ugam marmot (Ugam River basin and Ugam -Sayram plateau; and Sayram marmot (Sayram River basin). Marmot live at 2000-3400 m above sea level. Due to the reduction of the geographic range, the lower boundary of the range rose to $2200-2500 \mathrm{~m}$ above sea level. The species inhabit Alpine and subalpine meadows and, to a lesser extent, grass steppe. The lower range populates the most snowy northern and north-eastern slopes; the upper range lives at an altitude of more than 2900 m in southern and south-western moderately snowy and thus warmer slopes. Marmot settlements are distributed unevenly, depending on relief roughness, cliffs abundance, and scree debris. Their preferred habitat is smooth hillslopes with moderately tall and short vegetation; marmots prefer to settle near streams and large snow fields. Grass stays fresh for long and animals are provided with juicy food before hibernation.

Persian gazelle (Gasella subgutturosa). Up until the mid $20^{\text {th }}$ century it existed almost everywhere in semiarid and desert zones of Kazakhstan and its geographic range spread from the Caspian Sea to the lli basin. At present the larger part of the range is displaced far to the south. Separate isolated populations were formed: in the lii basin, Taukum, Muyunkum, Kyzylkum and UstyurtMangyshlak species. Fixed uneven sands, rocky and clay deserts crossed by dry riverbeds and covered with brushwood of saxsaul, Calligonum, Salsola arbuscula and Ceratoides or open rocky spaces with saxaul or pastures are favoured.

According to official information sources, the designer engineers obtained letters confirming that migration routes and important animal and bird habitat is not present in the area affected by the Project.

Examples of the types of fauna in the study area include the following.

Figure 4-4 Types of Fauna

The abundance of the reptiles is very typical for this area. The lizard type is found here in three types: dexterous netlike and linear lizards, fringe-toed gecko and agama.

Birds residing this area are: (Podoces panderi) saxaul desert jay, desert warbler (Sylvia nana), night bird dikkop (Burhinus), (Anthus campestris) tawny pipit and others.

(Podoces panderi) saxaul desert jay

(Burhinus) dikkop

In the Syr Darya valley there is also a plain (Otus) screech owl - (Otus scops) scops-owl. In the cane thicket one can also find wild boar, cane cat and wolves.

4.7 Archaeology and cultural heritage

The main archaeological legislation is presented in Chapter 2. To date comprehensive information on the archaeological features that may be affected by the Project have not been made available from all the DEs, but this is currently being prepared to be available for inclusion into the lot-specific EMPs (to be finalized by the Contractors).

The Mausoleum of Khoja Ahmed Yasawi in Turkestan is in the wider Project area, but will not be affected due to the large distance from the alignment. The area around Sauran has a high potential for late finds / chance finds (see below and Chapter 5), however in the vicinity of Sauran the road will be reconstructed without widening on the same alignment. From discussions with the

DE responsible for the Shymkent bypass it is apparent that there may be some archaeological features that may influence the precise routing of the new bypass.

4.7.1 World Heritage Site in Turkestan

The Mausoleum of Khoja Ahmed Yasawi, in the town of Turkestan (formerly Yasi), was built at the time of Amir Timur (Tamerlane), from 1389 to 1405. In this partly unfinished building, Persian master builders experimented with architectural and structural solutions later used in the construction of Samarkand, the capital of the Timurid Empire. Today, it is one of the largest and best-preserved constructions of the Timurid period.

It is situated about 2 km from the future bypass alignment. Currently the main traffic is passing about 400 m from the site, thus the impact on the monument is expected to be positive in terms of reducing potentially harmful emissions $\left(\mathrm{NO}_{\mathrm{x}}, \mathrm{SO}_{\mathrm{x}}\right)$. The Monument is part of an organized, controlled and patrolled heritage site, thus any damage by illegal material sourcing, vandalism or looting in connection with the road project can be excluded.

4.7.2 Sauran

The ruins of Sauran medieval fortress are situated in the open desert, 40 km to the North-West from Turkestan city (before the 17th c. - Yasi) (Kyzylorda region, Kazakhstan Republic). These are the most spectacular and well-preserved medieval ruins in Kazakhstan. Medieval Sauran city is regarded and described as a standalone city oval in shape and surrounded by fortified walls.

The surrounding neighbourhood with remnants of mediaeval agricultural and irrigation layout planning is supposed to be a vast farm district, the extent of the area of which is still under interpretation by experts. From visual examination and particularly the air photos it is possible to distinguish some household plots with enclosed rectangular gardens and vineyards, and a network of irrigation ditches and canals. As far back as the end of the 60's as a result of decoding air photos of the city neighbourhood, the traces of the kariz / kahrez, underground drainage galleries to supply ground water to the city (Akishev, Baipakov 1973, 76-78) were found. Therefore, summarizing the materials and observations and the analysis, the concept of the "Sauran archaeological complex" was proposed. The "Sauran archaeological complex" can be considered as an ensemble of diverse and heterogeneous archaeological sites related through time by historical fate and by structureforming relations.

The area of Sauran archaeological complex according to preliminary estimates covers approximately $30-35 \mathrm{~km}^{2}$ stretching from North-east to South-West (Figure 4-6). In the lower southern section (see Figure 4-5) from NW to SE it is crossed by the Project highway and a railway with corresponding alignment from NW to SE. A present necessity is to ensure state protection not only of some monuments (fortress of Sauran, Karatobe, etc. with a 50 -meter protection belt according to the "Monuments' Conservation Act") but also the zone (territory) of their spread as an archaeological conservation area with relevant planning of land use, granting an adequate status (Act of the Republic of Kazakhstan "On Conservation and Usage of the Historical and Cultural Heritage", Articles 36 and 37).

The precise legal status of the proposed archaeological reservation area is not known, but it will under all circumstances be necessary to adhere to all the national archaeological legislation, involve the relevant authorities and apply the late finds protocol. All the studies, liaison and fieldwork will be undertaken following award of contracts to the Contractors, who will be responsible for managing these issues. The PMC will ensure from the Client's side that the provisions for
cultural heritage protection laid out in the tender documents are implemented effectively during construction.

The highway section passing Sauran / crossing the proposed archaeological reserve zone will involve reconstruction of the road on the existing alignment, within the ROW only. No road widening is planned as the road will remain a 2 -lane highway and the main works will be rehabilitating embankment, road base and surface. A key principle to be followed in this section near Sauran is to strictly disallow any local material sourcing, but to bring in aggregates and fill from areas at a safe distance from the site.

Figure 4-5 Lower section of the Big Sauran kariz. Aerial photo (2006)

Another potential area of potential impact is associated with the mediaeval town of Tashanak, located in the 2057-2135km section. The Archaeological Expertise for this section resulted in a substantial cost estimate for the survey and conservation of any monuments affected.

4.8 Natural hazards

Serious seismic activity in the South part of Kazakhstan tends to occur every 80 to 100 years. The last period of seismological activity happened between 1885 and 1911. During that period there were serious earthquakes at Belovodskoye in 1885, Vernenskoye two years later and Keminskoye in 1889. detailed information has not been available, but the Design Engineers informed GD that the structures that are proposed have been designed to withstand earthquakes. Seismicity of the area is 6 points of Richter scale.

The major natural disasters that occur in this area are desertification and dust storms (the territory close to Aral Sea), degradation of vegetation and radiation.

There are natural sources of radioactive contamination. Types of radioactive contamination are divided into natural and human-made. The territory of the region has a high radioactive background, this is due to the presence of Shu-Sarysuskoy and Syrdarinskoy provinces that contain a large reservoir-infiltration uranium deposits.

4.9 Land use

4.9.1 Introduction

This section of the report presents information on land use along the highway alignment. The vast majority of land in the Category B section is flat, open Steppe, typified by grazing of livestock. The land use through the Category A section is far more diverse and includes several large settlements and some highly organised agriculture

4.9.2 Settlements and Communities

Kzylorda Kazakhstan region population - 631,800 (2008). The land area-226,000 sq. km. Density - 2.8 people per square kilometer. The population of Kzylorda region of Kazakhstan is twothirds urban, located mainly along the Syr Darya River valley. 7 rayons: Aralsk, Dzhalagash, Dzhanakorgan, Kazalynsk, Karmanshik, Syr Darya, Shyely, 3 cities, 287 villages.

South Kazakhstan region of Kazakhstan

South-Kazakhstan oblast, as the administrative and territorial unit, was established on March 10, 1932. The oblast is located in the South of the country and is one of the largest in Kazakhstan. The oblast territory is 117,3 thousand sq. km. Population - 2282,5 thousand people. Density - 19.0 people per square kilometer. It borders with Uzbekistan in the South-West and with Kyrgyzstan in the South-East. The South Kazakhstan oblast 12 rayons: Baydibek, Kazigurt, Maktaaralsk, Ordabasynsk, Otrar, Sayram, Saryagash, Syzaksk, Toleby, Tulkubas, Shardary. 8 cities and 876 villages. The Turkestan ancient city is a tourist destination due to the historical and religious significance.

4.9.3 Industry

Kyzylorda region

Types of industry: oil, construction materials (prefabricated concrete). Mineral deposits include various salts, ochre, and construction materials. Russian space satellites are sent up from the large launch site, Baikonur, near Leninsk.

South-Kazakhstan Region

The leading industries of South Kazakhstan region are nonferrous metallurgy, cement, textiles, chemicals and food. Mineral deposits include natural uranium, barite, polymetallics, brown coal, iron and construction materials. Lead and zinc are mined in the Karatau Mountains and lignite in the Lenger area.

4.9.4 Agriculture

Kyzylorda region

Rice is the most important crop, melon fields. Karakul sheep, horses, camels, pigs and poultry are raised. There are fisheries on the Aral Sea and a fish cannery at Aralsk.

South-Kazakhstan Region

Agriculture is largely irrigated; the chief crops are cotton, grains (including rice), tabaco, fodder, and vegetables, and there are extensive vineyards and orchards. Sheep, horses, camels, pigs and poultry are raised on the desert pastures in winter and the alpine meadows in summer in South Kazakhstan region of Kazakhstan.

4.9.5 Road side vendors

Along the route there are a variety of sporadic roadside vendors, typically comprising cafes, small shops and re-fuelling (fuel) stations. Some of these establishments are rather rudimentary, whilst others are well constructed and well maintained facilities.

As part of the studies information was collated on their legal entitlement, which was found to be variable, with many facilities having no legal certification and land use registry (Cadastre). These issues will be fully addressed by the Social Impact Assessment that is being conducted in parallel to the EIA and therefore information is not repeated herein.

4.10 Road network and traffic

4.10.1 Road condition

A detailed description of the existing road and its alignment is not available from all of the design engineers and the information is of a very variable quality across the DEs. Therefore, information has been extracted from the design covering the section $1980-2057 \mathrm{~km}$ and is presented as a typical description of the existing highway; although the road does vary throughout its length, as does the degree of undulation and wearing course condition.

The width of the carriageway of the existing road of III technical category is 7.0-9.0 meters. The width of the road shoulder is $3.0-6.0 \mathrm{~m}$. The surface of the road is rough, its thickness is up to 2.5 3.0 cm . The pavement is of a two layer construction. The top layer's thickness is $5-8 \mathrm{~cm}$, the bottom layer's thickness is $5-15 \mathrm{~cm}$. The road base comprises gravel with sandy aggregate, with a thickness of $5-15 \mathrm{~cm}$, lies below. The foundation/sub base comprises gravel with sand aggregate with a thickness of $5-50 \mathrm{~cm}$.

The sub base of the existing road is sourced from material adjacent to the road alignment.
The maintenance of the existing road is complicated by irregular surface subsidence due to the lack of compaction during the construction of the road base, which was crudely mounded to form the embankment.

4.10.2 Traffic volumes

Detailed information on the existing traffic composition and levels and forecasts of future levels has not been made available to date and data from the FS is somewhat variable in its quality. An extract of available information in presented below in Figure 4-7, which shows truck traffic levels and a forecast for 2020.

Figure 4-7 Truck traffic levels

5. ENVIRONMENTAL IMPACTS AND MITIGATION

5.1 Background

This ESIA has been undertaken by GeoDataPlus (GD) based on the designs provided by the individual Design Engineers (DEs), which were based on the recommendations of the Feasibility Study (FS). It is understood that the FS considered the 'do-nothing' option and the 'upgrade highway' option. Throughout the design of the Project rigorous, progressive ESIA has been carried out in step with data and information becoming available to the ESIA Consultant. It is understood that the DEs have worked on preferred designs advocated in the FS, and the authors of this ESIA have no information as to whether or to what extent other alternative designs or options were considered during the FS. Thus this ESIA report has been conducted largely following the FS preferred options developed to more detail during the current design phase. In addition the 'do nothing' option is presented in the context of impact analysis..

As the designs are still being finalised and as the ESIA work has been conducted in parallel and results are available in form of the EMPs, it should be possible to incorporate its findings into the ongoing design work, therefore achieving an iterative process of design and environmental assessment.

ESIA good practice includes for an iterative process whereby as designs are developed they are evaluated for their environmental and social (E\&S) effects and then the results fed back into the ongoing design. This is particularly the case when adverse E\&S impacts are forecast. To date, the Design Engineers have largely developed their designs in parallel and somewhat independently of the overall ESIA being undertaken by GD. Thus, for example, up to mid December 2008 GD were only primarily able to carry out limited public consultations at two main locations, Turkestan and Kyzylorda, as the designs were not all available at that stage. Subsequently, following preparation of the draft ESIA report (and preliminary Resettlement Plan) towards the end of December 2008, additional public consultations were conducted in approximately 6 communities along the highway route and are reported on herein in Annex 12, as part of the 'information disclosure and public consultation process' required under the Bank's OP 4.01 and OP4.12. As forecast in the draft ESIA, this consultation did result in some community opposition to some of the designs, most notably concerning the elevated section in Temirlanovka. The community feedback regarding the proposed elevated structure through Temirlanovka has prompted the RC to commission the designers to develop an alternative approach such as a bypass. A definitive alignment does not yet exist for a bypass and therefore it is not possible in this report to evaluate its $E \& S$ effects. This work will become the responsibility of the Contractor that is commissioned to conduct detailed design and construction through this section of highway, in the context of the EMPs that the Contractors will be required to prepare for the individuals lots.

In accordance with Kazakhstan legislation, an EIA is required for each project and therefore each of the 12 DEs was initially expected to prepare an EIA for their lot/section. However, in order to finance the overall ESIA study by GD, resources were re-allocated to GD, who was also required to provide the 12 ElAs in addition to this overall ESIA. From discussions with the DEs in December 2008 it became apparent that several of them were also continuing to prepare EIA information and possibly apply for the Ecological Expertise. In one case (Kazniipi Dortrans, for the Zhanakorgan bypass) the Ecological Expertise submission has been made (early December) and this has also included the application for Archaeological clearance/approval for this Project section. The Archaeological Expertise has been processed and includes recommendations for field
investigations, which the Project should finance. Some additional work has been conducted since December 2008 (see Table 5-1) and this leaves 5 Ecological and 4 Archaeological Expertise to be processed. The permitting system from a national perspective is also presented in Table 5-1. Detailed descriptions of the designs, alignment and construction aspects have not been provided by all DEs. At the time of report finalization less than half of the DEs had provided sufficient information that would allow a comprehensive evaluation of design aspects, such as land affected and its usage, borrow pits, laydown areas and similar features. This information has been used to scope the E\&S issues that are likely to arise and for which mitigation strategies have been developed.

									29 ә6ed				
											sod	speos Kıesoduel	8
				Sal	palnuep！sl！d		penpuap！sild	рə！！！uәр！ silid			əmos＇sə入	ןeog tevinos 	L
			sə入	sod							so人	sessedkg	
				sol				sed			sed	S」влоку＇suolpoasıäul	9
			sə入	so入		sed	sod	sa入		sod	sod		9
				Sod							snoupen sed	ગృə əddaıs uədo бә әsn pueן ןeo！d 人 $_{\perp}$	†
sa入			sol	sal		so入		sal	so入	sol	sə入	snłejs əs！मə ןеэ！	ε
sod	sel		sod	so入				sod	son		so入	smiejs 	z
so人	se入		son	sə入	sə入	sə入	sed	sa入	se入	sol	sol	јиəแиб！｜v	\downarrow
－1	$\varepsilon 1$	21	1	01	6	8	L	9	9	\downarrow	ε	2	1
													$\begin{gathered} \mathrm{L} / \mathrm{U} \\ \overline{\mathrm{~N}} \end{gathered}$
uepsyyezey－yınos				epıo｜ízixy								u0！бəy	

5.2 Methodology

Chapter 4 provides a description of environmental baseline conditions in the Project Area. This baseline knowledge permits identification of environmental parameters that may be affected by the proposed Project.

The potential positive and negative changes resulting from the Project activities are predicted for the Project Area during the construction phase and into operations. These predicted changes (impacts) are then evaluated using a significance ranking process. An outline of the impact assessment procedure is as follows:

- Identification of the baseline receptors;
- Identification of the key project activities;
- Impact evaluation; and
- Significance ranking.

This ESIA has focussed on the environmental and social aspects, but has not included land compensation and resettlement aspects for Project Affected Persons (PAPs), which have been considered separately.

5.2.1 Baseline Receptors

A baseline receptor $(B R)$ is any part of the environment that is considered to be important or valuable and merits detailed consideration in the EIA process. In this context the broadest definition of 'the environment' is applied, such that BRs may be selected according to economic, social, aesthetic or ethical criteria, as well as by consideration of physical and biological characteristics. The process of selecting BRs may consider legal status, scientific or cultural value, and public perception; and may account for the views of national or local government, international, national or local non-governmental organisations, or the general public.

The selection of BRs is dependent on the nature of the proposed project, because only those environmental components that have the potential to be affected by the project are selected. This depends on the types of interaction with the environment that the proposed project is expected to have, given its component activities and area of influence. A BR may not have the potential to be affected by routine project activities, but could be impacted by non-routine events.

Based on the environmental baseline of the Project Area, BRs (aspects) have been identified and are listed in the following tables, along with the potential impacts and mitigation where required.

5.2.2 Project Environmental Aspects

The Project description provided in Chapter 3 of this document has been summarised into key environmental aspects that will occur throughout the life of the project. An environmental aspect is an element of the project's activities that can interact with the environment. The key aspects associated with the Project activities are presented in

Table 5-2.

Table 5-2 Environmental Aspects

Project Component	Environmental Aspects
	Removal and disposal of existing road surface Demolition works for bridges and other structures Removal of habitat for widening/land take Working over rivers and wetlands Pedestrian and community safety Procurement and delivery of construction materials Access to and from the highway under improvement
	Traffic movement through the Project Area Use, maintenance and repair of equipment and machinery Potential polluted run-off
Air and noise pollution from preparation of construction materials such as	
bitumen, asphalt and concrete.	
Extraction of sands and gravels for embankments and road bases	
Construction camps	
Waste and hazardous materials management	
Service disruption (electricity, telecoms, water, gas)	
Disruption to irrigation and drainage infrastructure	

Project Component	Environmental Aspects
	Inappropriate waste disposal and littering

5.2.3 Consultations

Consultations with relevant Governmental organisations and the public are an important component of the ESIA process. They often provide valuable insight in to the Project Area and act as a source of guidance in the scoping of the ESIA study, ensuring that all the appropriate issues are addressed and that official organisations are in agreement to the scope of the study. For the draft ESIA, GD held Public consultations (see Appendix 11-1) to discuss the EIA TORs in Kyzylorda (9/16/08) and Turkestan (9/17/08. The locations were selected in consultation with the Road Departments, because they offered the best access for all local government agencies, Kyzylorda is a regional centre and Turkestan is an important cultural and tourist city. The reports from these consultations are presented in Appendix 11.

In January 2009 the draft EIA report as well as the draft Abbreviated Resettlement Plan were presented in a series of consultations in about 10 communities along the alignment. Two of the consultations were observed by the Bank team and found to be open, transparent and effective in fostering free and unencumbered expression of opinion by the affected stakeholders. There were significant concerns raised about some of the design features (e.g. Temirlanovka Overpass) and many constructive proposals received from the local population on the presented design and its environmental and social performance. Such proposais included solutions for traffic safety (especially pedestrian safety), animal crossings, noise protection and community cohesion. The proceedings and results were summarized in a Consultation outcome report (Appendix 12), which is the basis for communicating required design changes from the Committee for Roads (CR) to the design engineers responsible for individual lots.

In accxordance with the World Bank's Operational Policy on disclosure of information OP 17.50 the ESIA report (in English and Russian Languages) will be published on a Project website established within MOTC as well as in the World Bank's InfoShop (http://go.worldbank.org/EXFM3GNE60). Further, the MOTC/RC will continue its outreach to stakeholders and send emails or letters of invitation providing details including dates for any further public hearings, as part of ongoing design and project preparation work.

5.3 Impacts and mitigation during Construction

There are 5 types of works which have common associated environmental issues which will be repetitive throughout the Project area:

- road rehabilitation (same alignment, no widening) within the right of way (ROW)
- road widening (e.g. from 2 to 4 lanes), mostly within the ROW
- new construction on a new alignment / ROW, e.g. bypasses
- major structures (underpasses, intersections, flyovers)
- major river crossings, bridge rehabilitation and new bridges.

This section of the report presents information on the potential E\&S impacts and their mitigation, commencing with those associated with 'general' highway upgrading and then presents information on more specific issues, such as bypasses and particular localities. The general potential impacts
and mitigation are largely common to the bypasses and other specific sections and are thus not repeated. The general upgrading has been considered to be the upgrade from 2 to 4 lanes, as the renovation of the existing roads (without widening), where bypasses are to be installed will differ from that involved in widening the road, with concomitant land take and associated effects.

The potential impacts and mitigation are summarised in Table 5-4 and include an analysis of the residual impacts, assuming the mitigation is effective. The table also includes aspects of management and monitoring, as it is likely that routine in-country monitoring and delivery of effective mitigation is unlikely to meet best international practice that would ensure delivery of the Safeguards Policies practiced by the World Bank. Thus the report makes recommendations for an effective level of on-site monitoring during the construction phase.

This section of the Project (Category A) will be developed in parallel with the first phase for the road section between the cities of Shymkent and Kyzylorda (approximately 461 km), as well as the city bypass for Kyzylorda (about 20 km). This section has been classified environmental Category " A ", as most of the alignment entails widening of the road from a two lane cross section to four lanes, and the construction of several large bypasses and structures such as flyovers and bridges.

For the on-line widening potential impacts include land take, removal of road side vegetation and planting, interference with irrigation and drainage infrastructure, removal of roadside infrastructure, relocation of overhead (electricity) and underground services (cables, pipes), and removal of several income generating activities and businesses such as petrol stations and cafes.

It is anticipated that temporary haul routes and temporary roads will be constructed in parallel with the existing road, probably by graders levelling the surface sufficiently for vehicle traffic. It is common practice in Kazakhstan to leave such areas untreated after construction, but in order to reduce the overall impact (landscape and habitat) it is recommended to de-compact these routes and reinstate the top layer of soil to encourage reinstatement. Exceptions may be made for areas with dense vegetation, for which a fire-break is sometimes provided.

The contracting arrangements for the Project are not yet finalized, work on the tender packages will be started only after the project has been approved by the WB Board of Directors. However, an international Project Management Consultancy (PMC) will assist in implementation supervision and will entail a team of environmental specialists to monitor and (contractually) enforce EMP implementation. As part of this it will be essential that the recommendations of this ESIA and its EMPs are given ownership and are effectively managed. It is presumed that the MOTC/RC will take ownership and will manage the implementation along with the PMC, inserting the relevant specifications in the bid documents/contracts and providing leadership in ensuring that the World Bank requirements are delivered. The institutional capacity of the MOTC/RC is not well know at this stage, but it is considered that there is a need for some institutional capacity building in respect of E\&S commitments and their delivery. This important item has therefore been included in the EMPs, over and above the capacity building that will form part of the PMC contract.

5.3.1 Rehabilitation of existing road

Rehabilitation of the existing road will occur in two situations, namely online rehabilitation of the existing road North of Kyzylorda (Category B) and along the existing road where new bypasses will divert through traffic away from the settlements to be bypassed (in both Category A and B sections). Typically this does not result in widening of the road area and as such potential E\&S impacts are limited. Precise details are not available from all the DEs, but the work typically comprises removal of the wearing course, repair and correct compaction of the sub base, repairs to
the embankments and cross drainage and replacement of a new wearing course. It is assumed that street furniture and signage will be replaced or repaired during this process.

5.3.2 General highway upgrade

This 'general' highway upgrade comprises widening of the road from typically 2 lanes to 4 lanes, predominantly on-line, often with asymmetrical widening and with the sharper bends straightened in accordance with the design standard of 120 km per hour.

The E\&S issues include those associated with land take adjacent to the existing road and in the road corridor, where bends are removed to achieve design speed curvatures. Planting and vegetation will be removed and irrigation and drainage infrastructure will be affected and services such as overhead electricity cables will require to be relocated further outside of the corridor/ROW. Disruption to through traffic and noise and disturbance, along with material extraction and delivery to site are potential issues.

Air quality

The works will require considerable amounts of plant and machinery including bulldozers, graders, asphalt laying plant and road rollers. Temporary routes may also be required adjacent to the existing road and is considered a major source of dust which must be controlled through dust suppression techniques, such as water spraying from bowsers. Trucks hauling dry materials will also be required to be covered to reduce dust nuisance and health issues for workers and nearby residents.

Water resources

Works have the potential to damage irrigation and drainage infrastructure and adversely affect water resources through accidental spillage of fuels and other hazardous material during construction, as well as increased erosion and resulting turbidity. It will be necessary to develop working methods and procedures for storing and handling materials, minimising spillage and for clean up of spilled materials and filtering process waters before reaching the surface drainage network. This aspect has been accommodated for by specifying that a waste management plan is prepared by the Contractors.

On the area of the Kyzylorda bypass the swamp lands appear as a result of flooding during river channel overflow. Such lands are undoubtedly valuable as lands suitable for bird nesting and animals adjusted to living close to settlements. During construction these animals may be affected by the road traffic, as well as by construction machinery and equipment during road construction, reconstruction, maintenance and repair, as well as by the materials used for the works.

The following requirements should be implemented during construction to minimize the impact on surface and ground water:

- Areas where water is regularly used for dust control including material batching, should be equipped with a drainage system that prevents water pollution by suspended solids.
- No discharge of materials or substances produced in the course of the works into water bodies or natural depressions. No washing of equipment, especially rinsing of concrete trucks in any surface water courses.
- Ensure that all permanent and temporary passages and spillways on the construction sites and beyond are kept free from waste.
- All contaminated water from construction sites should be collected disposed of in accordance with the waste management plan that the Contractor is required to prepare.
- It will be necessary to avoid re-fuelling of construction equipment in the immediate vicinity of water sources.

Ecology and biodiversity

The baseline data of ecological resources and biodiversity are available at an overview level. Comprehensive surveys have not been undertaken, but are planned for the detailed design phase in specific road sections (notably the Kyzylorda bypass), following appointment of Contractors. It should be noted, however, that overall the road follows and all bypasses will remain within a wide corridor where infrastructure and population are concentrated and which is already impacted by a scope of human activities. During field studies under this consultancy as well as independent field reviews by the Bank team no indications were found that valuable natural habitats will be seriously impacted, and endangered species, notably larger mammals or birds, will be put under additional stress.

It is known that birds use the Syr Darya River corridor as a migratory flyway, however whilst the road predominantly follows the river potential impacts are not anticipated given the large distance between the road and river. In addition, for the majority of the alignment the upgrade works comprise on-alignment improvements involving only minor encroachment into adjacent lands. No protected areas or locations of protected species are known from the vicinity of the road and therefore it is concluded that impacts are minor (see Appendix 5-14). Potential impacts are forecast to be restricted to the localities of the two crossings of the Syr Darya River.

Sources of impact of the highway Project on flora and fauna include:

- traffic, construction vehicles and machines and materials used during construction.
- abstraction and use of non-renewable natural resources (road construction materials: stone products, sand, crushed stone etc; construction material extraction.
- structures' effects on hydrology and possibly birds.
- pollution from vehicle exhausts and highway run-off, noise and vibration.

Landscape, Geology and soils

The soils are variable along the route of the road, being strongly saline, silty and fine and at times sparsely vegetated and prone to washout and wind erosion in many places, particularly in the Category B section North of Kyzylorda. In general the soils improve towards the South, in line with increased precipitation and organic matter content and vast areas are utilised for both irrigated agriculture and arable (cereal) production. Soil conservation measures are recommended throughout the Project works and despite the topsoil resources being limited, it is essential that they are conserved effectively by good soil handling practices, as this will be crucial to successful reinstatement and prevention of erosion.

In contrast to most of the Category B section, which has a predominantly flat, featureless landscape, sections of the Category A alignment include rolling hills and formally planted roadside verges, which define the road alignment within the visual envelope. During online widening much of this planting will be lost and it is strongly recommended to conduct landscape planting as part of
roadside reinstatement, as this reduces the visual impact, provides a partial barrier to the airshed (vehicle emissions) and offers habitat to disturbance tolerant species.

Due to the prevalence of lead in fuels in the country, it is also recommended to undertake some soil analysis to evaluate potential toxicity of soils that could affect construction workers or areas where the soil is re-used for landscaping.

Noise and disruption

Potential noise and disruption will affect any residents and land users in the vicinity of the road, with the greatest effect considered to be in and around settlements, particularly those which are not bypassed by the Project. Noisy activities include graders and bulldozers handling road materials, compacters and rollers preparing road bases and asphalt machinery during preparation and laying of new surfaces. Demolition and construction of new structures is also a considerable source of noise and disruption.

Contractors will have to develop working methods that reduce fugitive noise and disruption and allow an interface with residents to make representations, as part of the grievance mechanism, so that works can be completed without causing major disruption to residents.

Archaeology and cultural heritage

The potential exists for heritage features to be damaged or lost during road widening, with the potential greatest in areas which are known to have important features or areas in which heritage features are discovered during the works. The hierarchy of measures that is typically followed is desk study, field surveys and then on-site supervision during the works (watching brief), with works following a Late Finds Protocol (see below).

At time of report finalization the archaeclogical expertises have not been completed by all design engineers, however this will be completed by the Contractors once they have been appointed and have progressed the detailed designs. Depending on whether or not anything is found during the future site surveys the study is initially paid for by "Dortrans" (the National Design Institute under the Ministry of Transport). If something of significance is found further studies are to be paid for by the road construction companies, which ultimately is the responsibility of the MOTC/RC and therefore a cost estimate has been provided in the EMP.
"Chance find" procedures are basically consistent with World Bank requirements. If something is found, work is immediately stopped the Archaeological Institute is informed and becomes legally responsible. The Archaeological institute investigates and secures the site and only after their evaluation is finished work is permitted to proceed.

One 'hot spot' area for archaeology is the section developed by the DE KazNIIPI Dortrans to the North of Turkestan, which passes the ancient city of Sauran. As is described earlier, a large area has been proposed as an Archaeological Reservation Area Figure 4-6, which stretches across the railway and road to be upgraded. The exact legal status of this proposal has not been established to date, however the DE has applied for an Archaeological Expertise and the result is presented below in Table 5-3. A beneficial factor for this section is that design foresees no road widening but only repair of the existing configuration. Effective protection measures will include to restrict all access into the future reservation area, and especially ban any materials extraction or deposition, establishment of temporary works, storage areas or camps.

Table 5-3 Results of Archaeological Expertise obtained to date

Customer	Section	Base of expertise	Conclusion	Recommendations
KazNIIPI Dortrans	$\begin{aligned} & 2055-2057 \mathrm{~km} \\ & \text { Length of } \\ & \text { alignment }-20 \\ & \mathrm{~km} \end{aligned}$	Visual observation, archive materials, observation of stratigraphical situation, topographical maps	Monuments of archeological importance weren't found, no heritage areas	
	$1398-1578$ km Length of alignment -180 km . Width of observation area - 400 m (200 m from both sides)	Visual observation, archive materials, observation of stratigraphical situation	9 objects were discoveredCemeteries of XVIII-XX centuries. They are located from 8-140 meters from the axis of the road. Monuments of archeological importance weren't found, no heritage areas	During the construction works, it is necessary to consider safety zones (buffer area) specified for cemeteries according to the SNiP, or to identify another dimension of buffer area based on agreement with the local authorities. In order to avoid damaging to any objects discovered it is important to install protective fencing along the perimeter of each cemetery and maintain it during construction.
KazDorNII	$1578-1702$ Length of alignment-124 km KM, width of observation area - 400 m (200 m from both sides)	Visual observation according to the alignment was given by customer.	Monuments of archeological importance weren't found, no heritage areas	

Customer	Section	Base of expertise	Conclusion	Recommendations
	1837-1917. Length of alignment -80 km. Width of observation area - 400 m (200 m from both sides)			
KazNIIPI Dortrans	2055-2057 km Length of alignment -2 km	Visual observation, archive materials, observation of stratigraphical situation, topographical maps.	15 monuments of historic culture that are part of the Medieval town of Sauran (belongs to 15-16 century $A D$) are known: 14 - suburban chateau 1 - kyariz ancient irrigation system	During the construction work in order to avoid damaging any objects discovered it is important to install protection fences along the perimeter of each of the monuments. In case changes to the existing alignment (road widening), and monument are inside a construction area, it is important to make urgent archeological survey on its screening and reinstatement of all monuments (the preliminary cost is $110,900,000.00$ Tenge). Construction will take place only after archeological clearance is given for the road section.
Shymkent Kazdorproject	2057-2135		Some monuments of history culture that form part of the Medieval town of Sauran are discovered: suburban chateau, kyariz ancient irrigation system Medieval town of Tashanak	Preliminary cost of archaeological survey for all monuments is 175,944,660.00 tenge It is important to make archeological survey on its screening and reinstatement of all monuments. According to the local Kazakh legislation (article 2, The Law of the Republic of Kazakhstan "On Protection and Use of the

Customer	Section	Base of expertise	Conclusion	Recommendations Historical Cultural Heritage"): In case of finding archaeological and other objects having a historical, scientific, artistic or other cultural significance during the performance of such works the enterprises, organizations, institutions, public associations and individuals shall be obliged to inform the authorized agency for protection and use of the historical cultural heritage of this fact and suspend further operations.
Engineering Centre Astana	$1702-1807 \mathrm{~km}$		Single burial mound	The complex archaeological survey must be conducted before beginning construction work

An outline Late Finds Protocol (LFP) has been developed during this ESIA, as follows:
The overall goal of the protocol is to take appropriate protective measures for significant late finds. The operational success of the protocol will be measured by its ability to rapidly distinguish legitimate late finds from other finds and to take appropriate action in each case without causing significant damage to the archaeological heritage of the country or unnecessary construction delays. Archaeological resources consist of surface and near-surface artefacts and related materials in a spatial and stratigraphic context, which constitute a unique scientific, artistic and cultural record of the past societies that created them. Furthermore, where no contemporary written records of a past society or culture exist, archaeological remains may constitute the only extant record of that people. Without necessary information and planning, ground-disturbing projects such as this Project have the potential to damage archaeological sites and artefacts, thereby diminishing the referenced scientific and cultural values.

Archaeological sites are considered to be an important and irreplaceable áspect of any country's cultural patrimony. Construction impacts to archaeological sites may be significant and are nearly always irreversible. They are, however, precisely definable in their spatial extent and do not extend beyond the specific impact-causing construction activity.

The protocol includes for:

- Employ qualified technical staff for archaeological monitoring, which will be a requirement in the Contractor's specification for the EMP that he is required to produce prior to work commencement;
- Be integrated into the project Environmental Management Plan (EMP);
- Include efficient formal lines of communications and reporting with Contractor staff and with external national archaeological agencies (throughout the detailed design stage and through construction); and
- Set out clear decision criteria for potential actions in response to specific types of finds and employ appropriate actions that are also practical for use in the context of a large construction project.

The LFP will operate through a system whereby the relevant archaeological authorities and/or archaeological contractors provide on-site supervision and provide a response function in the event that resources are located or suspected as being present on the work site. It will be the decision of the designated archaeological representative to determine the nature of the actions to mitigate potential impacts to late find areas. An hierarchy of actions will be developed by the Project in coordination with the relevant authorities. Mitigation will include aspects such as site avoidance, special construction techniques, minor re-routes or rapid archaeological evaluation, or as a last resort work stoppage until clearance is given by the authority.
At the Project planning level, Kazakhstan has strict laws on protection of cultural properties and historical sites. The regular procedure is for the design institutes/engineers to submit a draft design to the Archaeological Institute who then performs a site survey. To date not all DEs have progressed this aspect and it will become the responsibility of the Contractor following award of contract. If there are no issues, the Archaeological Institute issues an "archaeological assessment certificate" which is submitted to the Ministry of Culture for approval. There are regional offices,
however it is only the Almaty Office of the Archaeological Institute that is authorized to do the site survey.

Traffic and driver safety

The works have potential to cause major disruption to through traffic, as well as causing unsafe conditions through interaction with slow moving construction vehicles and plant. Construction dust and materials represent another source of nuisance and danger to through traffic.

It will be essential to maintain an efficient traffic flow during the construction works to avoid considerable delays and to ensure driver safety. Appropriate advance and site signage and detours will be required throughout the duration of the works. In addition, to the main works contract, it is recommended that the Contractor(s) prepare details of traffic management and safety plans in advance for agreement of all parties and make these plans publically available to minimise traffic disruption.

5.3.3 Bypasses

Kyzylorda bypass

The proposed scheme in this section involves constructing a bypass to the city of Kyzylorda of ca. 20 km and a new bridge crossing of the Syr Darya River. The bridge structure has allowed for passage of flood waters underneath following the Spring snow melt and for ice flows during its design. Potential E\&S issues include working in the seasonal wetlands and the riverine habitats, with potential damage to sensitive features and spillage of construction materials such as cement, fuels and oils.

The West part of the bypass comprises flat, hypersaline, fine grained, sandy / silty / clayey soils with dry scrubland vegetation with occasional trees, patches of bare soil with salt crusts. The land appears to be of marginal value, not suited for agriculture, with obvious signs of salinisation and a strong anthropogenic impact. There is a network of small roads and tracks, one major irrigation canal, power lines, settlements and individual houses, unregulated borrow pits and gravel extraction areas and unregulated waste disposal (mostly domestic waste).

At the left bank of the irrigation canal the land is seasonally inundated and in the Spring the canal flow rate is up to $208 \mathrm{~m}^{3} / \mathrm{sec}$. Generally following the bypass route the soil was noted to be highly saline and used extensively for informal garbage disposal. The site of the Syr Darya crossing has a similar land use. The land near the river is highly saline and seasonally inundated and suffers from informal garbage disposal.

Part of the alignment will run close to an area which the city master plan foresees as a future recreational and buffer zone, therefore it will be necessary for city planners to reconcile the bypass and any future induced development with the master plan by appropriate measures such as sound barriers and green corridors.

The South East area is similar to the West, with existing anthropogenic impacts including roads and tracks, power lines, unregulated sand extraction and waste disposal, canals, settlements and grazing of cattle and goats. Areas to the North and East include old borrow pits with little apparent regulation and no reinstatement.

Baseline data of ecological resources are available only at an overview level, as detailed field data have not been collected along the bypass route, but field observations indicate a rather limited
ecological value. Additional field data may be collected following award of contract to the Contractor and progression of the detailed design. Depending on the amount of data to be researched (which is expected to be limited) this will be carried out by a Consultant under responsibility of the Contractor and under supervision of the PMC, or by a third, independent entity. It is known that birds use the Syr Darya River corridor as a migratory flyway, however whilst the road predominantly follows the river potential impacts are not anticipated given the large distance between the road and river. Also the road has been existing for several decades. No protected areas or locations of protected species are known from the vicinity of the road or where it crosses the river and therefore it is concluded that impacts are minor.

The mitigation to be employed will include adherence to the fuels, oils and hazardous material management plan that will be developed by Contractors at commencement of the works. This should minimise the chances of impacting the riparian habitats at the bridge crossing section.

Turkestan bypass

This option involves online upgrade along the alignment of the existing bypass around the city and new crossings of the railway line twice.

Zhanakorgan bypass

This bypass of ca. 21 km in length bypasses to the North East the settlement of Zhanakorgan, passing through predominantly open grazing land. The Project includes a 120 m long bridge over the railway and road and replacement of an existing bridge of 36 m over the Besaryk River, as well as drainage infrastructure of pipes and culverts.

The DE has calculated some of the construction logistics, including outline material identification and their sources as:

- Bitumen from Russia - railway delivery (2145 km)
- Gravel, sand - from a local Shalkiin quarry (haulage delivery from 53 km)
- Reinforced concrete structures from Almaty - railway delivery (1040 km)

The construction works include the taking of additional land for temporary use, including a temporary bypass section of over 6 km in length.

Ikan Bypass

This 12 km long bypass to the West of the settlement passes through many fields that are used for cotton cultivation and therefore attention must be given to minimising effects on the irrigation and drainage features in the area.

Shieli Bypass

This 10 km long bypass traverses largely open ground and will have limited environmental impacts.

Shymkent bypass

This long bypass includes five new underpasses and a new bridge over the River. The route is predominantly across open lands including grazing areas and organized agriculture with arable crops.

5.3.4 Major structures and Intersections

Temirlanovka

The original design foresaw an elevated structure of about 2.9 km length which would be built on the alignment of the current throughway / main road of the village. It would require the closure of parts of the existing road underneath where the structure would be installed at times during of the works and can be expected to cause significant disruption to the residents during construction but more so during operation. The DE's sub Contractor (Dongsung Engineering) has reported the intention to minimise nuisances during construction, but given the limited space and the large structure, considerable disruption is likely. Large lifting equipment will be required to manoeuvre the prefabricated bridge sections into position and attach them to the structure. The structure would result in the demolition of some properties, but precise details are not available. The structure would also incorporate a suspension bridge over an intersection of ca. 63 m length. Precise details are not yet available, but likely the construction period for the structure could be up to 2 years.

This design concept presented during the second wave of public consultations in January 2009 was heavily criticised by the local population (despite strong support by local Government) and has found no acceptance. Therefore the elevated structure will be replaced by an alternative solution, most probably a bypass outside the built up area with a new bridge crossing of Arys River. The design of the bypass and its alignment is not available presently, and the production of a detailed EMP will become the responsibility of the Contractor, following award of the contracts for detailed design and construction.

Intersections

There are a number of large intersections proposed at the junctions with the existing road and bypasses and at major crossings with roads. The designs proposed are typically 'clover leaf' arrangements, which are very large and would require large land take. To date the DE: have not proposed alternative configurations, whilst it is possible to use a less costly and more land efficient junction, particularly where traffic volumes do yet warrant such an elaborate arrangement.

The E\&S effects of the clover leaf junctions include large land take, landscape impacts and an effective sterilisation of the land within the intersection. Where feasible, landscaping and planting could be considered to reduce the visual effects.

5.3.5 Major river crossings and bridges

Some major river crossings and bridges have already been considered as part of the bypasses which require new bridges and river crossings and hence the evaluation is not repeated here.

5.3.6 Impacts and mitigation analysis

The descriptions of the potential impacts and mitigation are provided in the sections above and a tabulated summary is presented below in Table 5-4, which also assigns a significance to the potential impacts and the residual impacts. The table is structured to present the type of work, the E\&S aspect, potential impacts and significance and then the residual impact after applying the mitigation. It should be noted that the impact tables have been prepared without all the detailed designs being available and are therefore at a somewhat generic level, however they are deemed to be representative of the impacts and their mitigation and when combined with the EMPs should form an effective framework for managing the E\&S effects.

Table 5-4 Potential impacts during construction

	Aspect	Potential impact	Significance (Low, Medium, high) + = positive $0=$ neutral - = negative	Mitigation	Residual impact/comments
On-line 2 to 4 lanes					
	Air quality	Emission from construction vehicles and machinery	- medium	All vehicles, equipment and machinery used for construction will be regularly maintained to ensure that the pollution emission levels conform to the standards prescribed	Negligible.
		Construction related dust, from movement of vehicles at site and to sites from borrow and quarry sites, etc.	- medium	Dust suppression will be used on unsealed road surfaces, asphalt mixing sites and temporary service areas.	Negligible.
		Vehicles hauling materials will generate dust nuisance.	- medium	Vehicles delivering material will be covered.	Negligible.
	Soil	Soil Erosion due to inadequate and immediate application of stabilization techniques.	- high	Re-vegetate barren cuts and work areas as soon after the work has been completed as is practical.	Negligible.

	Aspect	Potential impact	Significance (Low, Medium, high) + = positive $0=$ neutral - = negative	Mitigation	Residual impact/comments
		Damage to soil through compaction along temporary work areas such as laydown sites and transport routes.	- medium	Strip off topsoil initially and then de-compact and reinstate topsoil for effective reinstatement.	Minor.
		Illegal or excessive borrowing of earth for infill damaging natural resources.	- high	Materials borrowed only from authorised locations for which a site specific EMP is made available and has been approved by the PMC environmental specialist.	Negligible.
		Contamination of soil from fuel and lubricants.	- high	All fuels and oils stored in accordance with international practice; bunded and impervious flooring.	Negligible.
		Pollution by fuels spillage.	- high	Construction vehicles and equipment will be maintained and refuelled at protected refuelling stations where practicable.	Negligible.
		Non-productive, barren lands, first choice as approved and licensed borrow areas.	- medium	Re-cultivation of borrow areas wherever practicable.	Negligible.
	Surface water	Pollution of resources by fuels and oils.	- high	Fuel storage and refueling sites located away from drainage channels and important water bodies.	Negligible.

	Aspect	Potential impact	Significance (Low, Medium, high) + = positive $0=$ neutral $-=$ negative	Mitigation	Residual impact/comments
		re-vegetation.			
	Fauna	Loss, damage or disruption to fauna due to unnecessary and unapproved increases in construction work areas, soil compaction.	- medium	Construction workers will be directed not to disrupt or damage the fauna.	Minor, most activity will take place within meters of existing alignment
		Fauna damaged or killed from unauthorised access or hunting.	- medium	Obiast rules for hunting (Wildlife Protection) will be adhered to and rules for bird catching (Wildlife Protection) will be followed. Off-limits fencing and signage where necessary.	Minor.
	Landscape	Landscape impact due to large work areas.	- medium	Implement best practice soil handling techniques to allow for successful reinstatement of affected areas.	Minor.
	Agricuture	Damage to agricultural lands, including drainage and irrigation infrastructure.	- high	Liaise effectively with PAPs before start of construction, maintain dialogue, develop a grievance procedure, strictly control machinery and vehicle access and reinstate all affected areas.	Minor.
	Livestock safety	Livestock resources damaged by machinery and vehicles.	- medium	Liaise effectively with PAPs before start of construction, maintain dialogue, develop a grievance procedure, strictly control machinery and vehicle access, consider fencing for	Minor.

	Aspect	Potential impact	Significance (Low, Medium, high) $+=$ positive $0=$ neutral - = negative	Mitigation	Residual impact/comments
				protection.	
	Noise	Inadequate prevention of construction-related noise from vehicles, asphalt plants, crushing and batch plants and equipment.	- medium	The plants and equipment used for construction will strictly conform to MEP noise standards.	Minor
		Disturbance to residents.	- medium	Working hours/activities will be adjusted to avoid low-noise times.	Minor.
		Protection of workers H\&S	- high	Noise standards for industrial enterprises will be strictly enforced to protect construction workers from noise impacts, in accordance with international HSE procedures.	Low
	Traffic	Traffic disruption	- high	Develop and implement effective traffic management plans and make them publically available.	Low
	Community safety	Residents injured by construction traffic and machinery	- high	Conduct safety awareness campaigns, focussing on schools and children.	Residual impacts will be dependant on quality and effectiveness of the campaigns.
	Community	Community loses access to	- high	Consult with local officials to establish an	Medium and will

	Aspect	Potential impact	Significance (Low, Medium, high) + = positive $0=$ neutral $-=$ negative	Mitigation	Residual impact/comments
	economic activity	resources, affecting income generating activities.		adequate detour plan and sufficient access to areas cut off or constrained by the work	depend of effectiveness of the plans implemented.
	Worker HSE	Workers injured during construction	- high	Implement international HSE standards in all contracts.	Minor and if standards and training is high, the working practices could be a beneficial legacy of the Project.
	Material resources	Illegal or excessive borrowing may damage archaeological or land resources.	- high	No earth borrowed from unauthorised locations.	Minor.
	Archaeology and cultural heritage	Loss and damage to cultural resources	- high	Conducted fled surveys prior to construction in 'hot spot' areas with potential value. Develop and implement a Late Finds Protocol, including maintaining watching brief during works, with clear procedures for protection and documentation.	Medium.
		The highway runs through the 'Prospective Sauran Archaeological Reservation Area'	- high	Involve the Archaeological authorities at all stages of highway upgrade design, due to the importance of the area.	Medium

	Aspect	Potential impact	Significance (Low, Medium, high) $+=$ positive $0=$ neutral - = negative	Mitigation	Residual impact/comments
	Property and land value	Reduced land or property vaiues.	- high	Establish and maintain dialogue with PAPs to reduce adverse effects as part of ongoing design and construction.	Minor.
	Waste	Contamination of soil or water resources.	- high	Contaminated or hazardous waste such as bitumen waste to be dumped in selected areas \& approved by MEP/MOTC or its consultants/PMC. All waste disposal to comply with a Waste Management Plan, to be developed at the start of construction.	Minor
		Pollution of groundwater and soils during demolition of fuel stations.	- high	Develop working method statement to include effective management of fuels.	
	Hazardous material use and storage	Soil and water pollution.	- high	Construction vehicies and equipment will be maintained and refuelled at protected refuelling stations. Fuel storage and handling sites located away from drainage channels and important water bodies	Negligible.
		Soil and water pollution.	- medium	Develop plans for cement and wash-water management.	Negligible.
	Construction camps	Community tension and disruption.	- medium	Evaluate locations for camps through ESIA process. Develop camp management rules.	Minor

	Aspect	Potential impact	Significance (Low, Medium, high) $+=$ positive $0=$ neutral $-=$ negative	Mitigation	Residual impact/comments
				Develop and implement a Project Induction training course that is mandatory for all workers; this will contain H\&S, environmental and social context components.	
		Spread of disease, including STIs.	- high	Conduct awareness campaigns for camp workers and if relevant nearby communities.	Minor.
		Water and soil pollution.	- high	The sewage system for such camps will be properly designed and built so that no water pollution takes place. Such facilities will be decommissioned at end of the construction period.	Minor.
	Encroachment	Land resources damaged.	- medium	Identify work areas with Contractor(s) and describe system approvals for extensions and fines for violations.	Negligible.
	Temporary roads	Vegetation removed, soil compacted, landscape and vegetation impacted.	- medium	Remove topsoil layer initially and afterwards decompact routes and reinstate, except where a fire buffer zone is required.	Minor
Management		E\&S control during project implementation insufficient to ensure mitigation.	- high	Include effective E\&S monitoring and control as part of the construction contract.	If implemented efficiently, could be a positive Project legacy.

	Aspect	Potential impact	Significance (Low, Medium, high) + = positive 0 = neutral $-=$ negative	Mitigation	Residual impact/comments
		E\&S auditing during project implementation insufficient to ensure effective mitigation.	- high	World Bank to provide in-country supervision and auditing to guarantee effective delivery of safeguards policies.	If implemented efficiently, could be a positive Project legacy.
Bypasses					
Shymkent		Damage to farmland and irrigation networks.	- medium	Liaise effectively with PAPs before start of construction, maintain dialogue, develop a grievance procedure, strictly control machinery and vehicle access and reinstate all affected areas.	- Minor
Ikan		Impacts on irrigated agriculture, including cotton		Liaise effectively with PAPs before start of construction, maintain dialogue, develop a grievance procedure, strictly control machinery and vehicle access and reinstate all affected areas.	.
Zhanakorgan		Long bypass with bridges and water crossings, also affects abandoned irrigated areas.	- low	Standard mitigation, including soil protection and pollution control measures.	- Minor
Shieli		This 10km long bypass traverses largely open ground and will have limited environmental impacts.	- Iow	Standard mitigation, including soil protection and pollution control measures.	- Minor

	Aspect	Potential impact	Significance (Low, Medium, high) + = positive $0=$ neutral - = negative	Mitigation	Residual impact/comments
Kyzylorda	Flora and fauna	Damage to riparian habitats of Syr Darya River.	- high	The floodplain does not appear to contain much typical wetland habitat, but riparian habitats are valuable. Develop working method statements and procedures to include effective fuel, oils and cement management.	If implemented effectively, the procedures could be a beneficial legacy of the Project.
Major structures \& Intersections					
Temirlanovka					
	Community safety	Residents injured by heavy lifting and overhead works in proximity to residences and businesses.	- high	Develop an effective method statement for construction, in consultation with the residents.	
	Service and utilities disruption.	Services disrupted by large scale construction works.	- high	Develop an effective method statement for construction, in consultation with the residents.	Potential low adverse effect.
	Traffic management.	Both through traffic and local traffic disrupted due to road closures and restrictions during lifting and overhead works	- medium	Develop an effective traffic management plan for through traffic that also minimises disruption to residents.	Potential medium or low adverse effect, depending on the success of the traffic

	Aspect	Potential impact	Significance (Low, Medium, high) + = positive $0=$ neutral - = negative	Mitigation	Residual impact/comments
					arrangements.
	Property loss	Properties damaged or requiring to be demolished to facilitate the construction works.	- high	Develop and implement a compensation scheme that is compliant with WB procedures (Resettlement Action Plan). Provide for compensation and emergency management for any accidental damage due to close proximity of works to properties.	Potential medium or low adverse effect, depending on the success of the compensation arrangements.
Clover-leaf intersections and flyovers.		Large land take and sterilisation of land.	- medium	Rationalise the need for and design of large junctions and implement effective landscaping and planting works to reduce visual effects.	Minor adverse effect given large land resources.
Major river crossings \& bridges					
		Damage to riparian habitats.	- medium	Develop working method statements and procedures to include effective fuel, oils and cement management and to limit encroachment.	- insignificant

5.3.7 Category B

As this section of the Project (Aktobe-Kyzylorda Oblast border) has previously been screened and evaluated as being category B, a full ESIA has been deemed not to be required. This was determined as the majority of the improvements works are confined to online widening and the general landscape is characterised by flat, Steppe lands, with an absence of sensitive features.

This section of the report presents an overview of the potential impacts during construction and the mitigation and management actions are contained in the Environment Management Plan (EMP) to the rear of the report.

5.4 Impacts during Operation

5.4.1 Category A

This section presents the potential impacts and mitigation during the operation phase of the highway.

5.4.2 Rehabilitation of existing road

The repaired sections of road will act as an efficient link to local traffic to and from the upgraded main highway. It is expected that they will be handed over to and maintained by the local authority concerned.

5.4.3 General highway upgrade

An environmental issue common to all road usage in Kazakhstan is the ongoing issue associated with the use of leaded fuels, which still predominate, and through the airshed and to some degree highway run-off, adversely affect roadside soils. Data suggest that due to the continuing use of lead in fuel, lead levels in roadside soils are 10-20 times the Kazakhstan standard and in the roadside airshed, up to $3 x$ the accepted levels. Given lead's well known effect on the young and their brains and motor functions and the fact that the most toxic (based on a previous modelling study) material will need to be handled during construction, a lead level survey should be undertaken for every national highway and any other road where traffic levels are over 1000 vehicles/day.
Consequently, road widening without knowledge of the toxicity of the soils and development of a better plan for the prevention of roadside land use for the production of food, could put construction workers and roadside residents at risk of construction-induced lead poisoning. Kazakhstan is pushing forward toward lead-free petrol but until that happens roadsides will continue to be contaminated and roadside communities within 50 m of the shoulders face ongoing lead contamination dangers.

Accident data for Zhambyl Oblast (ADB and ISDB sections) for 2006 indicated that 0.6% of all accidents were vehicle animal collisions. In other oblasts this has been reported as higher and a growing hazard. Consideration should therefore be given to driver safety through provision of fencing, at least near settlements and in areas with higher livestock densities.

Mitigation during the operational period of the project will predominantly centre on instaliation of noise attenuation measures associated with traffic noise, the maintenance of roadside vegetation barriers designed to attenuate some of the emissions as well as the noise.

Highways are a known obstacle to animal migration and much is documented on animal mortalities due to collisions with motor vehicles. The issue tends to become significant when important migratory pathways exist which have been severed by road construction, particularly when affecting important or rare species. Species affected can include large and small mammals, as well as amphibian and reptiles. As the majority of the Project comprises on-line improvement, significant adverse effects are not necessarily predicted, as the road currently exists, however monitoring should be undertaken to evaluate the impacts and undertake mitigation as required. An area where potential impacts are unknown, but are feasible, are the bypasses whose routing is typically through open countryside or farmland. It is recommended that additional studies and consultations are conducted during the detailed design to assess if mitigation is required in the design scheme, which could include additional fencing, light-reflectors or measures such as underpasses for amphibian or reptiles.

5.4.4 Bypasses

The ongoing issues with bypasses include run-off and induced development due to improved communications with the upgraded road. Increases in noise, dust and air pollution are also feasible, particularly where the routing has traversed agricultural land. Run-off should be considered and managed for its potential adverse impact on agricultural crops, particularly if leaded fuel is still prevalent for some time in the future.

5.4.5 Major structures and intersections

Temirlanovka

An originally planned elevated structure would have formed the dominant feature on the horizon for the majority of residents close to the road. It would have changed the atmosphere of the small settlement from a rural village to a more urban type environment, as the centre of the village would be dominated by the imposing elevated road. The original design sought to mitigate negative impacts somewhat by including a noise wall at the highway boundary aimed at reducing noise exposure to residents and to some extent vehicle exhaust gases and dust. However, the quality of life for residents adjacent to the structure would have been significantly negatively impacted. The structure would appear to prevent any future widening on this alignment due to its proximity to the residents and properties in the settlement.

It is understood that the main highway network will be maintained by the regional authorities, whilst roads within settlements will be maintained by local authorities. If this approach is followed, there would be the possibility that the local authority could be made responsible for the elevated section, which would have a much higher maintenance requirement than a local road, in addition to its lighting requirements, which might be a serious challenge to maintenance budgeting.

After local consultations and determined resistance against this solution by the residents, the concept was abandoned (see also section 6.4).

5.4.6 Major river crossings and bridges

The ongoing issues with river crossings include run-off as well as increases in noise, dust and air pollution which could affect aquatic habitats. Run-off must be considered and managed for its potential adverse impact on the river environment, particularly if leaded fuel is still prevalent for some time in the future.

Table 5-5 Potential impacts during operation

	Aspect	Potential impact	Significance (Low, Medium, high) $+=$ positive $0=$ neutral -= negative	Mitigation	Residual impact
On-line 2 to 4 lanes					
	Air quality	Increased air pollution.	- medium	Mandatory annual vehicle inspection for heavy vehicles encouraged. Regular maintenance of the road will be done to ensure good surface conditions.	- medium
	Soil	Soil Erosion due to inadequate and immediate application of stabilization techniques.	- medium	Re-vegetate barren cuts and work areas as soon after the work has been completed as is practical. Maintain roadside planting.	- low
	Surface water	Potential pollution from spillages from accidents and road maintenance.	- medium	Develop system of spillage control and clean-up; evaluate Oblast level existing spillage plans.	- low
	Ground water	Changes to groundwater levels or flows	- low	Monitor groundwater patterns	- low
		Unmanaged stormwater drainage from road surfaces drained directly into water courses leading to	- medium	The drainage system will be periodically cleaned. Undertake remedial drainage system repair	- low

	Aspect	Potential impact	Significance (Low, Medium, high) + = positive $0=$ neutral - = negative	Mitigation	Residual impact
		chronic contamination.		including settling basins or interceptor runoff means(indirect route to receiving water) Water quality will be monitored as the monitoring plan to be developed.	
	Flora \& fauna	Increased road kills	- low	Install fencing for larger mammals and monitor impacts on fauna	0
	Landscape	Changes to landscape from agricultural to semi-urban	- low	Conduct roadside planting and landscaping	0
	Agriculture	Loss of agricultural land	- low	Provide alternative land and compensation so PAPs are not adversely affected.	Large alternative areas often available in Kazakhstan.
	Livestock safety	Encroachment into previous agricultural land increasing livestock damage/losses.	- medium	Develop a fencing strategy in consultation with PAPs/farmers.	- low
		Insufficient consideration for proximity of livestock to roadsides and growing collision rate.	- medium	The detailed design team needs to have Akimet officials provide data on locations of concentrations of livestock crossings and for these sections provide special signage and warnings to vehicles to slow down. Further, it will be important for MOTC to enforce its roadside restricted use zone at all time, thus discouraging animal grazing near the road.	- low

	Aspect	Potential impact	Significance (Low, Medium, high) + = positive $0=$ neutral - = negative	Mitigation	Residual impact
	Noise	Increased noise along new alignment	- medium	Consider landscape planting and/or fencing in consultation with PAPs.	+ low
		Failure to implement noise abatement measures such as plantings, berm construction or noise barriers., especially near sensitive receptors such as hospitals and schools, leading to chronic noise pollution	- low	Undertake remedial planting and repair. Monitor noise pollution and effectiveness of noise attenuation measures.	0
	Traffic \& driver safety	Increased accidents due to higher speeds.	- low	Good signage, traffic calming and speed enforcement measures required.	+ low
	Community safety	Increased speed and traffic levels pose risk to pedestrians and local users.	- high	Undertake safety measures as part of the design, including overpasses, traffic calming and other procedures as necessary; consider education of school children on road safety.	- minor
	Property and land value	Reduced property prices due to adverse effects of upgrade.	- low	Consider these factors during routing design to maximise positive benefits to people and their economic situation. Monitor adverse effects due to noise and develop mitigation such as planting or barriers.	- low
Management					

	Aspect	Potential impact	Significance (Low, Medium, high) + = positive $0=$ neutral - = negative	Mitigation	Residual impact
Bypasses					
Kyzylorda		Highway run-off and spillages affecting wetlands and the Syr Darya River	- high	Include highway run-off in the design and conduct maintenance as required for incidental spillages.	- medium-low
Temirlanovka	Property and land value	Property and land value decrease.	- medium	Increased economic value of road may not offset negative impact of elevated structure.	- medium
		Lack of maintenance of lighting.	- low	Provision of guarantees for supply and maintenance.	+ low
		Future widening not possible	+ low	no mitigation required, stable alignment desirable from environmental perspective	+ low
Major Junctions	Land resources	Land sterilisation and visual impact	- low	Conduct landscaping to reduce visual impacts, consider alternative use where feasible.	- minor

5.4.7 Category B

Rehabilitation of existing road

The rehabilitation of the existing alignment into settlements where bypasses have been constructed is expected to yield environmental and economic improvements, as travel times are reduced.

General highway upgrade

The vast majority of the alignment traverses an open steppe landscape that is hypersaline and supports predominantly saline tolerant scrub and sparse vegetation and as such potential impacts associated with the additional land take are limited.

There are potential adverse impacts where know environmental features exist, such as at river crossings and sensitive archaeological sites and through irrigated agricultural areas for rice cultivation.

Bypasses

The majority of alignments traverse open, saline landscapes and will have limited adverse impacts. An important aspect will be soil handling to achieve successful embankment reinstatement and reinstatement of temporary sites for material handling and transport.

6. ANALYSIS OF ALTERNATIVES

6.1 Introduction

This section of the report presents the alternatives to proceeding with the Project and includes an evaluation of the without Project and alternative design scenarios. The designs under consideration by the DEs were based on the findings of the feasibility study, which considered the do-nothing option and the upgrade highway option. It is understood that the DEs developed the Project components based on the feasibility study, and they were not therefore required to consider alternative alignments for aspects such as bypasses. Consequently, this study in some cases could not evaluate alternative designs developed to much detail, but focus on options provided by the FS and on a general plausibility evaluation of logically possible variants.

Analogous to the project impact definition there are several project scenarios to be considered for the definition of alternatives:

Scenario	Alternatives to be considered
Basic road rehabilitation, either without widening within the right of way (ROW) or with road widening (e.g. from 2 to 4 lanes) mostly within the ROW	only alternative: no project
New construction on a new alignment / ROW e.g. bypasses	no project designed alternative alternative alignment definition
Major structures (underpasses intersections flyovers	no project existing design solution other locations or design solutions lessening the footprint and improving environmental performance of a structure
Major river crossings bridge rehabilitation and new bridges	no project existing design solution other locations or design solutions lessening the footprint and improving environmental performance of a a bridge

In many cases the technical road design as well as geographic, technical, financial and other constraints do not encourage the development of several potential design solutions, in such cases the only alternative will be "without project".

6.2 Without project

Without the Project, the road would continue to be a logistic obstacle to road transport form China to Russia and the economic benefits to Kazakhstan and surrounding economies would not be realised. Many sections of the road have parts where the wearing course is damaged and the road surface shows pronounced undulation, due to differential settlement of the road base. This condition adversely affects traffic safety and reduces vehicle speeds, as well as being an impediment to safe overtaking of slower vehicles.

In general the environmental conditions along the road would continue as present. Measures foreseen for environmental mitigation and increased traffic safety as per design of the project, and resulting in positive impacts such as improved run-off management and control, noise screens, dust control, safer pedestrian crossings and overpasses and speed control measures would not, or to a much lesser extent be realized. Villages and cities would continue to experience through traffic, which is negatively impacting community cohesion, health and safety and pose a risk especially to pedestrians, cyclists, animals and other non-motorized road users.

6.3 Bypasses

The bypasses have been designed as an alternative to widening on the existing aligriments, as the sections through the settlements are typified by residential and commercial development close to the existing road. The feasibility study judged that widening from typically 2 lanes to 4 lanes, to a national standard would be unacceptable, given the amount of demolition that would have to be undertaken to make sufficient space for the additional lanes. Moreover, the impacts resulting from increased traffic-associated emissions (noise, dust, exhaust gases) are expected to increase after road rehabilitation and the expected rise in traffic volume. In most cases the DEs have not actually presented the positive and negative effects that would have allowed a comparison between original alignment and the construction of a new bypass. This aspect was not considered in any detail in the feasibility study, which considered the do-nothing and upgrade road options. The alternatives for bypasses differ from case to case and can be summarized as follows:

The bypasses between the City of Kyzylorda and Aktobe Oblast (Category B) are generally relatively short (several km) and either bypass small villages or optimize the existing alignment by enlarging curve radiuses, eliminating unnecessary corners etc. Most of the bypassed settlements are surrounded by arid pastureland which already shows some degree of degradation by overgrazing, garbage disposal, material sourcing and other human activity. The routing of the bypasses in this context will have little influence on their environmental performance, thus a discussion of alternative bypass options is considered redundant.

In the case of Zhosaly Bypass the routing of the alignment is constrained by the existing bridge over Syr Darya, which is intended for rehabilitation but should remain on the existing location. The bypass will cross some temporarily inundated lands, which were inspected regarding their environmental sensitivity by a Bank team. It was found that they do not constitute sensitive habitats, as neither fauna not flora were observed to be present. The presence of water is seasonal and does not support the development of specific wetland habitats. The surroundings are already impacted by anthropogenic use (grazing, waste disposal, materials extraction, roads) and overall not environmentally sensitive. Thus a detailed investigation of alternatives is not warranted for the Zhosaly bypass.

The Kyzylorda Bypass is more complex, has a larger dimension and is situated in an environmentally more sensitive area than the bypasses further North of the City. The alignment will run through a mixed environment influenced both by the proximity of the city, by competing uses for space and land, and by the presence of wetlands and the crossing of Syr Darya river. In addition to environmental sensitivities a number of social issues will be touched upon: Part of the alignment will run close to an area which the city master plan foresees as a future recreational and buffer zone, moreover existing settlements and individual houses close to planned bypass alignment will trigger issues of land acquisition, resettlement and impacts on existing settlements.

The existing alternative foresees an alignment to the SW of the city of Kyzylorda, crossing the Syr Darya River at a new bridge location and traversing land of mixed use and conditions (pasture, arid
brush, wetlands, canals, residential, roads, degraded land with waste disposal and unregulated materials extraction) for a length of several kilometres before linking again with the existing alignment West of Kyzylorda. While the impacts of this routing will be significant and need to be carefully managed (see EMPs in the following section of this report), the selection is seen as optimized in terms of environmental performance: (i) the route is kept as short as possible, alternative routes would be considerably longer; (ii) the impacts on wetlands have been minimized to the extent possible by routing and appropriate design measures; (iii) the necessity for land acquisition from private owners and the demolition of property has been minimized and is considered acceptable; (iv) other alternatives would be longer and would have comparable impacts (incl. the unavoidability of a new bridge over Syr Darya); (v) a no bypass alternative would have a distinct negative impact on the population in Kyzylorda due to increased emissions and reduced traffic safety in the face of increasing traffic volumes.

The bypasses South of Kyzylorda include Shieli and Zhanakorgan. The Shieli bypass traverses open ground with sparse vegetation and existing anthropogenic impacts such as intense agricultural use. The Zhanakorgan bypass traverses open ground that is heavily influenced by previous uses including numerous access tracks, quarrying and former agriculture.

6.4 Temirlanovka Village

The current preferred design option presented by the $R C$ is an elevated section of 4 lane road approximately 2.9 km in length, constructed on concrete pillars to a height of ca. 6 m , with a width of about 23 m , following the alignment of the current village throughway. The elevated section would start near the NNW entrance of Temirlanovka and run almost through the entire length of the village before tying back in to the existing alignment just before the existing bridge crossing of the Arys River. It is understood that the DE considered one or more bypass alignments, but allegedly dismissed them on cost grounds, due to their length and due to associated land acquisition and resettlement issues. These potential bypass alignments have not been presented by the DE, so it has not been possible to evaluate them for their E\&S implications.

It is also understood that the DE did not undertake public consultations on the preferred option, but restricted discussions to the local authorities. However, following the Public Consultations in January 2009 the community rejected the elevated structure and it looks certain that the design concept will be fundamentally changed and a re-evaluation of alternative options, such as a bypass, will be undertaken.

Without an available design for a bypass option it is not feasible to evaluate its E\&S impacts, however generic impacts are attempted at this stage, particularly in view of the probable high cost of the elevated structure and the potentially significant impacts on the community of Temirlanovka that would be affected by the elevated structure. Observation of aerial imagery suggests that a bypass is feasible with moderate environmental and social impacts. It would affect a small number of private properties (most of the land is allegedly state owned) and would require the conversion of agricultural land. No sensitive natural habitats or protected areas would be affected. Environmental impacts of the new bridge crossing of Arys could be mitigated with readily available standard measures.

Once the alternative bypass design is developed to sufficient detail an E\&S comparison will be warranted in compliance with WB procedures. It is anticipated that further $\mathrm{E} \& \mathrm{~S}$ evaluations will be undertaken during details design for this section of the road.

7. ENVIRONMENTAL MANAGEMENT PLANS

7.1 Introduction

This section of the report presents an Environmental Management Plan (EMP) for each of the Category A and B sections of the Project, which outline the management framework for how the environmental and social elements of the Project will be managed from detailed design and construction through operation. It is recommended by this study that the Contractors produce an Environmental Management System (EMS) that is preferably ISO 14001 compliant and a Project Environmental \& Social Management Plan (PEMP) covering all aspects of the construction of the project, although this has not been confirmed by the Roads Committee or World Bank as of yet.

The concept and use of EMPs has continued to evolve over recent years, with one of the main drivers being the successful implementation of recommendations and procedures advocated in Project EMPs. It is now common practice in large scale infrastructure projects for the ESIA to require the Contractor(s) to build on and expand the EMP produced at ESIA submission stage to provide details of how the Project commitments are to be implemented; essentially containing 'the how, who and where'. Thus where an EMP specifies that fuels, oils and other hazardous material shall be handled and managed in accordance with best international practice, many projects include a requirement for the Contractor to produce a Project specific hazardous material management plan. The details of this Project specific plan can then be monitored and audited so that the Project is compliant to both national legislation and International Financial Institution policy and standards. In this regard this ESIA therefore recommends that the contract includes the requirement for Contractors to develop the plans listed below shortly after mobilisation.

The recommendation for assigning the responsibility to Contractors is viewed to be a more efficient strategy than placing the E\&S performance burden on the MOTC per se or on the PMC. This takes into account the very limited institutional capacity of the MEP, MOTC/RC and the fact that international Contractors may be much more famillar with this way of working and may even operate ISO Environmental Management Systems, as this is becoming more widespread. Thus they should readily be able to produce Project specific Environmental Management Plans that also meet the requirements of the national legislation. The added value of such plans is that they will be very Project specific and can be compiled as part of construction planning for aspects such as fuel stores, plant selection and performance and material sourcing and sub contracting.

Details of the form of contract are not know at this stage, but it is assumed that the contracts will conform to international standards, that will include international H\&S standards to protect all workers and community members in the vicinity of the works. Thus it is anticipated that all workers will be trained in their tasks; all job items will be subject to prior risk assessment; Contractors will provide an inherently safe place of work, with safe standards and appropriate training; and workers will conform to Personal Protective Equipment (PPE) requirements. In view of this, an exhaustive list of H\&S standards and procedures has not been included in the EMPs.

Table 7-1 Management Plans

Project Induction
Traffic
management plan
$\begin{array}{ll}\text { Waste and } & \text { This should cover all aspects of waste management, including } \\ \text { wastewater } & \text { implementation of practice standards such as reduce, re-use and recycle. It }\end{array}$ management plan

An important mechanism for commencing work with due recognition of E\&S standards complying with International Lender requirements is a Project Induction. It is expected that all Contractors will put all Project staff through an initial Project induction, covering health and safety standards/procedures and an overview of E\&S Project values, requirements, standards and approaches.

This should detail how through traffic and construction traffic is to be managed, including temporary diversions, traffic signage and interface between construction plant and vehicles and through traffic and residents. should specify final disposal routes for all waste and demonstrate compliance to national legislation and best practice procedures on waste management.

The WMP will include details of temporary waste storage, waste transfer and pre-treatment prior to final disposal or recycling. Licensed/approved facilities for solid and liquid waste disposal must be used and a duty of care and chain of custody for all waste leaving the site will be followed. As part of the plan Contractors will be expected to produce waste handling forms for chain of custody, which will be used to control waste leaving site. Thus the waste controller will keep a copy of the form and the driver will always carry a copy and will ensure that the load is signed for at the final disposal site. All records will be kept by the Contractor for audit purposes and to demonstrate that the project is complying with best practice and applicable legislation.

Oil and fuel storage This plan will cover all storage, transportation and usage of oils and fuels, remanagement plan fuelling of plant and machinery and procedures for minimising the risk of ground and water contamination. All oils and fuels will be required to be stored within secondary containment of 110% capacity and all spillages shall be cleaned up immediately. Re-fuelling vehicles will carry Spill Kits to enable spillages to be cleaned up as soon as possible. All categories of spillage will be reported in accordance with the Plan to be developed by the Contractor. Toolbox Talks would be expected to be delivered on an ongoing basis as 'continued training' and following any significant incident.

Emergency \quad This should contain procedures for emergency response in the event of response plan mechanism

Site restoration Plan

Grievance \quad This should contain the procedures for the PAPs and the public to make accidents or major incidents, in order to safeguard people, property and environmental resources. representations to the Contractor(s) on compensation issues as well as other complaint/nuisance issues, such that they can be resolved in a transparent manner that can also be audited.

Should contain procedures for deconstructing all temporary installations, reestablishing the previous state of land or improving its environmental quality and for orderly removal of all construction waste and debris from sites.

This section of the EMP is common to both Category A and category B parts of the Project. The EMP includes aspects of mitigation for potentially adverse impacts as well as monitoring and feedback arrangements and identifies the responsibility for these undertakings.

7.2 Category A

The main component of the EMP is presented in Table 7-2 and is based on taking forward the potential impacts and their mitigation that were presented earlier. The combination of the management plans outlined above and the tabulated procedures are designed to mitigate the potentially adverse impacts to an acceptable level.

It is understood that the contractual commitments of the current DEs has been primarily fulfilled by their advancing of the designs from the Feasibility Study and their contracts will effectively terminate shortly. The next phase of design is therefore assumed to take place following engagement of the PMC and subsequently the Contractors, who will become responsible for all E\&S issues.

This EMP includes aspects that are required to be undertaken, going forward from the date of this report i.e. early February 2009. The cost elements are presented such that they can be included as a provision in the contract documents for award of Contractors. The Contractors will be responsible for undertaking detailed design and construction, which will include managing the E\&S issues, implemented via EMP's which the Contractors will prepare eg waste management plan etc. The costings are considered preliminary estimates only at this stage, with the main purpose being to allocate sufficient finances within the contracts to ensure that E\&S aspects are effectively managed going forward during detailed design and construction. If necessary, the construction contracts can be formulated in such a way as to ensure sufficient budget for E\&S management, with reimbursement to Contractors on the basis of the effort and expenditure incurred. For this purpose the cost estimates for budget planning purposes are considered generous.

Several issues in the EMP have not been assigned a cost, as they are largely dependant on the ongoing design and they are required to be included within the scope of work of the construction contracts. It is necessary therefore for the RC and the PMC to take cognisance of and ownership of the findings and recommendations of this report, in particular the EMPs. The EMP assumes for the cost of either expat or national E\&S staff resources. The number of Contractors is not known at this stage, nor is the length of contract or distance covered and therefore the E\&S effort and manpower required is not known. It will therefore be necessary to factor these logistics into the basic unit costs. Table 7-2 includes notes on cost calculations at the foot of the table.

The EMP is supplemented by a Monitoring Plan Table 7-3, which presents an outline of monitoring that is recommended during construction and operation. As many of the aspects of the detailed design are not available presently, such as the location and number of construction carnps, finalised designs for bypass alignments and structures such as Temirlanovka, the monitoring plan can not be finalised at this stage. It is envisaged that as the designs progress and the PMC takes up it position along with the appointed Contractors, the precise details of the monitoring will be discussed and finalised, at the same time as preparation of the Management Plans, which very much interface with monitoring.

Table 7-2 Category A EMP

Phase,	Issue	Mitigation	Institutional responsibility		Cost (\$)	
			Install	Operate	Operate	Notes
ESIA						
	Additional public consultation during detailed design	Conduct Project Consultation and Disclosure in accordance with WB procedures.	Contractors, Roads Committee (MOTC/RC)	Contractors, Roads Committee	48000	1
	Iterative decision making	Feedback consultation results into final ESIA and ongoing Project design.	Contractors, Roads Committee, DEs	Contractors, Roads Committee, DEs		2
	Local EIA approvals and harmonisation with World Bank ESIA	Oblast MEP and relevant authorities will need to be given the WB ESIA (appended to the individual EIAs in Russian language) and training on the EMP content and approach.	GD, Roads Committee	GD, Roads Committee	10000	3
	Iterative decision making	Feedback consultation results into ongoing Project design and make adjustments where necessary.	Contractors, Roads Committee	Contractors, Roads Committee		2
	Construction management of E\&S issues.	Contract specification/bid documents should include the EMP requirements and development of a Project Environmental Management Plan which specifies Management Plans for	GD, Roads Committee, PMC	Contractors	5000	4

Phase, location	Issue	Mitigation	Institutional responsibility		Cost (\$)	
			Install	Operate	Operate	Notes
		waste, hazardous material, water pollution etc.				
	Increase in adverse effects on surrounding land from vehicle emissions	Evaluate the potential and minimise adverse airshed effects through planting and or other barriers to avoid affecting residents and agricultural crops.	Contractors	MOTC/RC	20000000	5
	Poor calculation of material requirements impacting schedule and environmental resources	At detailed design stage accurate calculations are needed for infill and aggregate materials and sources identified and approvals obtained.	Contractors	Contractors		6
Institutional arrangements	Lack of capacity of the MOTC/Roads Committee to manage E\&S issues during detailed design and construction to comply with World Bank requirements	Provide institutional capacity building for MOTC/RC in delivery of E\&S Project commitments.	PMC, consultants	PMC, consultants	400000	7
	Lack of capacity of Central and Oblast level Ministries to manage E\&S issues during detailed design and construction to comply with World Bank requirements	Provide institutional capacity building for at least five ministries including the Ministry of Transport and Communication, Ministry of Environmental Protection, Ministry of Health, Ministry of Agriculture and Ministry of Energy and Mineral Resources. There are special institutions in Kazakhstan such as the State Expertise in Environment and several environmental think tanks that should participate as well. Finally, it is critical that the training should not only target the	PMC	PMC	100000	8

Phase,	Issue	Mitigation	Institutional responsibility		Cost (\$)	
			Install	Operate	Operate	Notes
	or ecological resources.	stimulated by Project demand for materials. No material sourcing in planned archaeological preserve in Sauran area.				
	Construction related dust, from movement of vehicles at site and to sites from borrows and quarry sites, etc.	Dust suppression will be used on unsealed road surfaces, asphalt mixing sites and temporary service areas. Water truck/bowser with spray bar is commonly used.	Contractor	Contractor		10
	Vehicles hauling materials will generate dust nuisance.	Vehicles delivering material will be covered.	Contractor	Contractor		10
	Loss or damage to vegetation	Replanting plan to be developed	MOTC/RC, Contractor			5
	Failure to properly manage/store topsoil, leading to degraded and substandard site reclamation and re-vegetation.	Cleary defined topsoil storage and handling in contract specification and follow up with regular inspection \& monitoring and reporting.	Contractor	Contractor		10
	Damage to agricultural lands, including drainage and irrigation infrastructure.	Liaise effectively with PAPs before start of construction, maintain dialogue, develop a grievance procedure, strictly control machinery and vehicle access and reinstate all affected areas.	Contractor	Contractor	100000	12
	Livestock resources	Liaise effectively with PAPs before start of construction,	Contractor	Contractor		12

Phase,	Issue	Mitigation	Institutional responsibility		Cost (\$)	
			Install	Operate	Operate	Notes
	damaged by machinery and vehicles.	maintain dialogue, develop a grievance procedure, strictly control machinery and vehicle access, and consider fencing for protection.				
	Inadequate prevention of construction-related noise from vehicles, asphalt plants, crushing and batch plants and equipment	The plants and equipment used for construction will strictly conform to MEP noise standards.	Contractor	Contractor		10
	Inadequate prevention of air pollution from asphalt plants, crushing and batch plants and equipment	The plants and equipment used for construction will strictly conform to MEP air quality standards and their siting be screened for sensitive receptors.				10
	Disturbance to residents.	Working hours/activities will be adjusted to avoid low-noise times.	Contractor	Contractor		10
	Protection of workers H\&S	Noise standards for industrial enterprises will be strictly enforced to protect construction workers from noise impacts, in accordance with international HSE procedures. All Project works will adhere to international $\mathrm{H} \& S$ standards, including minimum PPE standards, eg hard hat, safety boots, ear defenders and noise exposure limited to 85 dBA .	Contractor	Contractor		10
	Residents injured by construction traffic and	Conduct safety awareness campaigns, focussing on schools and children.	Contractor	Contractor	5000	13

Phase,	Issue	Mitigation	Institutional responsibility		Cost (\$)	
			Install	Operate	Operate	Notes
	vegetation impacted.	required.				
	Land resources damaged.	Identify work areas with contractor(s) and describe system approvals for extensions and fines for violations.	Contractor	Contractor PMC, RC		10
Construction camps	Community tension and disruption.	Evaluate locations for camps through ESIA process. Develop camp management rules.	DE, Contractor, Roads Committee	Contractor		20
	Spread of disease, including STIs.	Conduct awareness campaigns for camp workers and if relevant nearby communities.	Contractor	Contractor		21
	Water and soil pollution.	The sewage system for such camps will be properly designed and built so that no water pollution takes place. Such facilities will be decommissioned at end of the construction period	Contractor	Contractor		2
Bypasses						
	Slopes near floodplain erode and damage river habitats.	Develop slope stabilisation procedures to avoid river habitat damage.	Contractor	Contractor		2
	Irrigation and drainage infrastructure damaged.	Develop effective plans for alternative arrangements during construction and replacement facilities during operation.	Contractor	DE, Contractor		2
Kyzylorda bypass	Damage to riparian habitats of Syr Darya River.	Develop working method statement/plans to include effective fuel, oils and cement management.	Contractor	Contractor		22
Temirlanovka	Community safety	Develop an effective method statement for construction, in consultation with the residents.	Contractor	Contractor		23

Phase, location	Issue	Mitigation	Institutional responsibility		Cost (\$)	
			Install	Operate	Operate	Notes
	Service and utilities disruption.	Develop an effective method statement for construction, in consultation with the residents.	Contractor	Contractor		23
	Traffic management.	Develop an effective traffic management plan for through traffic that also minimises disruption to residents.	Contractor	Contractor		23
Construction Monitoring	Existing in-country procedures do not include rigorous on-site monitoring; relying on procedural audits applied for in advance (Chief Prosecutor's Office) and not suitable at all for the Project to evaluate E\&S performance.	Include the requirements for Environmental Aspect Management Plans and on-site monitoring by Contractors in the construction contracts, supplemented by effective monitoring and auditing by World Bank.	Roads Committee, World Bank	Roads Committee, World Bank		24
	The SNIP currently contains no design specification for highway run-off and its treatment, to protect water, ecological or agricultural resources. Thus highway run-off, including that from vehicle accidents, has potential to damage land and water resources.	For all sensitive land or water resources (eg river approaches and irrigated crop areas) include for the design of formalised highway run-off treatment, with retention ponds as a minimum. Develop effective spill response procedures.	Roads Committee, DE	Roads Committee, DE		25

Phase, location	Issue	Mitigation	Institutional responsibility		Cost (\$)
			Install	Operate	Operate
			Notes		
				TOTAL	$23,394,000$

1. additional consultations will be required during detailed design and where the design is not finalised eg Temirlanovka. Cost calculation on the basis of 1 no. public consultation cost $\$ 2000$ (staff and logistics and reporting) therefore assume 24no. $=\$ 48000$
2. part of the design process/contract - no separate cost required.
3. assumes national consultancy to provide training, assumes $\$ 10000$ allocation.
4. assumes consultancy support to RC during tender document preparation for PMC $\$ 5000$
5. construction contract to include landscaping within its scope. Landscape planting cost assumption; 5000 no. trees $/ \mathrm{Km}=\$ 20000 / \mathrm{km}$ total cost, assume $100 \mathrm{~km}=\$ 20000000$
6. no cost assigned; part of detailed design
7. an allocation of E\&S staff resources is required within the PMC contract to ensure in-house expertise. Cost assumes 2 no. international staff $@ \$ 100000 \times 2$ years $=\$ 400000$.
8. as part of capacity building training, assume an allocation of consultancy resources of $\$ 100000$
9. item to be included within contractor contract; assume allowance for monitoring of topsoil to be done by Environmental staff of contractor, assume allowance of sampling and analysis of \$5000
10. item to be included within contractor contract.
11. all new or Project-induced borrow pits to be topsoil stripped, landscaped and reinstated after exploitation for the Project. Plant/machine costs unknown, assume $\$ 10000 / h a$, assume $100 \mathrm{ha}=\$ 1000000$. Note: contractual leverage on existing/commercial pits unlikely to be possible, therefore focus is on new or induced extractions.
12. item to be included in contract specification. Primarily social issue (SIA). Assumption is allocation of a social staff resource per contractor $=1 @ \$ 50000 / y e a r x 2=\$ 100000$
13. item to be included in contractor contract; assume 1 national $@ \$ 100 \times 50=\$ 5000$.
14. item to be included in contract specification. Cost assumes 1 site survey $=5$ man days @ national archaeologist @ $\$ 200 /$ day $=\$ 1000$; assume 50 sites $=\$ 50000$. Watching

Phase, location	Issue	Mitigation	Institutional responsibility		Cost (\$)	
			Install	Operate	Operate	Notes
brief; cost assumption is 1 national archaeologist @ $\$ 50000 /$ year $\times 2$ persons $\times 2$ years $=\$ 200000$. Note: The two main Archaeological Expertise have quoted a cost of ca. $\$ 0.93$ million for Sauran and ca. $\$ 1.47$ million for the Tashanak site, therefore the cost has been included here, but the costs should be considered as contingencies.						
15. cost estimate is for preparation of the waste management plan. WMP to be prepared by contractors' international Environment staff resource, therefore no additional costs. Costs for compliant handling of waste types in WMP and disposal costs not available at this stage.						
16. item similar to 15.						
17. item to be included in contractor contract; environmental staff will manage the issue.						
18. item similar to 15.						
19. monitoring plan to be developed by contractor environment staff. Actual sampling and analysis upstream and downstream of major river crossings; most cost effective approach is purchase of a hand held water quality meter; cost assumes 1 meter and reagents $@ \$ 1000 \times 6=\$ 6000$.						
20. item to be included in contractor contract; issue to be managed by environmental staff.						
21. item to be included in contractor contract; issue to be managed by social staff.						
22. item to be included in contractor contract; issue to be managed by environmental staff.						
23. item to be reviewed pending finalised design, which may exclude the overpass. Traffic management plan still required.						
24. environmental resource of contractor will manage the monitoring.						
25. item to be included in design specification; no cost estimate feasible.						

Table 7-3 Environmental Monitoring Plan Category A

	Cost	Responsibilities

Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredtype of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Instal	Operate	Install	Operate
Construct ion	Damage to irrigation and drainage infrastructure	Agricultural lands	Visual observations, discussions with PAPs	weekly	Compliance to ESIA and social commitments	For all items responsibility is Contractor e.g. E\&S staff resources (see Table 7-2)		For all items responsibility is Contractor e.g. E\&S staff resources (see Table 7-2)	
	Water quality	Surface waters, key rivers	Water quality analysis	Monthly	ESIA compliance				
	Dust	At construction sites	Visual monitoring	Regularly site visits	Check environment and H\&S requirements				
	Waste water from construction camps and portable sites	At construction camps and portable facilities at work sites	Monitoring of appropriate installation and operation of wastewater units, latrines and septic tanks	Regularly site visits	Check environment requirements are being maintained				

Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredthype of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Cost		Responsibilities	
						Install	Operate	Install	Operate
	Solid waste management.	At all sites	Visual monitoring, paperwork, audit trail	Regularly site visits	Check environment requirements are being maintained				
	Disposal of solid wastes	At the disposal sites	Visual monitoring	Regularly site visits	Check environment requirements are being maintained				
	Construction materiais	At the work sites	Paperwork, records of source	Weekly	Check environment requirements are being maintained				

Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredtype of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Cost		Responsibilities	
						Install	Operate	Install	Operate
	Construction material extraction	At the borrow pits	Visual monitoring	Monthly	Check that environment requirements from EMPs are being maintained				
	Hazardous material, fuels and oils management	At construction sites	Visual monitoring, paperwork, auditing	Regularly site visits	Check environment requirements are being maintained				
	Protection of habitats	At construction sites	Visual monitoring	weekly	Check environment requirements are being maintained				

Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitored/type of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Cost		Responsibilities	
						Install	Operate	Install	Operate
	Community tension and disruption.	Construction sites	Observation	Regularly site visits	ESIA compliance				
	Spread of disease, including STIs	Settlements	Observation, discussions with representatives	Monthly	ESIA compliance				
	Prolection of workers H\&S	Construction sites	Observation	Regularly site visits	ESIA compliance				

Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredtype of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Cost		Responsibilities	
						Install	Operate	Install	Operate
	Residents injured by construction traffic and machinery	Construction sites	Observation, records	Regulariy site visits	ESIA compliance				
	Livestock damaged by machinery and vehicles.	Construction sites	Observation, records	Regularly site visits	ESIA compliance				
	Topsoil management	Construction sites	Observation, records	Regularly site visits					
	Emission from construction vehicles and machinery	Construction sites	Observation, records	Regularly site visits					

						Cost		Responsibilities	
Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitored/type of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Install	Operate	Install	Operate
	Traffic Disruption	Construction sites	Visual monitoring of designated routes	Regularly site visits	ESIA compliance				
Operation	Driver safety	Accident statistics	Information from Roads Committee	Annually	Design review	MOTC/RC responsibility; cost estimate not feasible at this stage.		MOTC/RC responsibility	
	Animal road kills	Road alignment	Information from MEP	Annually	Design review	MEP responsibility; cost estimate not feasible at this stage.		MEP	
	Water quality	Surface waters, key rivers	Water quality analysis	Quarterly	ESIA compliance	MEP responsibility; cost estimate not feasible at this stage.			

7.3 Category B

The main component of the EMP is presented in Table 7-4 and is based on taking forward the potential impacts and their mitigation that were presented earlier. The combination of the management plans outlined above and the tabulated procedures are designed to mitigate the potentially adverse impacts to an acceptable level.

Table 7-4 Category B EMP

Phase,	Issue	Mitigation	Institutional responsibility		Cost	
			Install	Operate	Install	Operate
ESIA						
	Lack of public consultation	Conduct Project Consultation and Disclosure in accordance with WB procedures.	Contractor, Roads Committee	Contractor, Roads Committee	1	
	Iterative decision making	Feedback consultation results into final ESIA and ongoing Project design.	Contractor, Roads Committee	Contractor, Roads Committee	1	
	Local EIA approvals and harmonisation with international good practice (e.g. World Bank ESIA	Oblast MEP and relevant authorities will need to be given the WB ESIA (appended to the individual EIAs in Russian language) and training on the EMP content and approach.	Consultant, Roads Committee	Consultant, Roads Committee	2	
Design						
	Iterative decision making	Feedback consultation results into ongoing Project design and make adjustments where necessary.	Contractor, Roads Committee	Contractor, Roads Committee	1	
	Construction management of E\&S issues.	Contract specification/bid documents should include the EMP requirements and development of a Project Environmental Management Plan which specifies	PMC	PMC	3	

Phase, location	Issue	Mitigation	Institutional responsibility		Cost	
			Install	Operate	Install	Operate
		Management Plans for waste, hazardous material, water pollution etc.				
	Increase in adverse effects on surrounding land from vehicle emissions.	Evaluate the potential and maximise airshed (vehicle emissions) effects through planting and or other barriers to avoid affecting residents and agricultural crops.	Contractor, Roads Committee	Contractor, Roads Committee	1	
	Poor calculation of material requirements impacting schedule and environmental resources.	At detailed design stage accurate calculations are needed for infill and aggregate materials and sources identified and approvals obtained.	Contractor, Roads Committee	Contractor, Roads Committee	1	
Institutional arrangements	Lack of capacity of the MOTC/Roads Committee to manage E\&S issues during detailed design and construction to comply with World Bank requirements.	Provide institutional capacity building for MOTC/RC in delivery of E\&S Project commitments.	Consultant	Consultant	2	
	Lack of capacity of Central and Oblast level Ministries to manage E\&S issues during detailed design and construction to comply with World Bank requirements.	Provide institutional capacity building for at least five ministries including the Ministry of Transport and Communication, Ministry of Environmental Protection, Ministry of Health, Ministry of Agriculture and Ministry of Energy and Mineral Resources. There are special institutions in Kazakhstan such as the State Expertise in Environment and several environmental think tanks			2	

Phase,	Issue	Mitigation	Institutional responsibility		Cost	
			Install	Operate	Install	Operate
		that should participate as well. Finally, it is critical that the training should not only target the central government, but rather focus largely on oblast-level capacity building, specifically the oblast offices of the national agencies.				
Construction						
On-line widening						
	Soil contamination through lead and vehicle usage.	Conduct representative soil analysis to evaluate potential contamination and remedial actions.			1	
	Damage to irrigation and drainage infrastructure.	Co-ordination with operators and farmers. Replacement of damaged infrastructure.	Contractor	Contractor	1	
	Relocation of services.	Effective co-ordination with utility companies during relocation.	DE, Roads Committee	DE, Roads Committee	1	
	Damage to utilities/services, and water abstractions.	Include specification to consult utility operators and procedures for appropriate investigation and reparation prior to ground breaking.	GD, RC	GD, RC	3	
	Emission from construction vehicles and machinery.	All vehicles, equipment and machinery used for construction will be regularly maintained and inspected/certificated to ensure that the pollution emission levels conform to the standards prescribed.	Contractor	Contractor	1	

Phase, location	Issue	Mitigation	institutional responsibility		Cost	
			Install	Operate	Install	Operate
	Construction related dust, from movement of vehicles at site and to sites from borrow and quarry sites, etc.	Dust suppression will be used on unsealed road surfaces, asphalt mixing sites and temporary service areas.	Contractor	Contractor	1	
	Vehicles hauling materials will generate dust nuisance.	Vehicles delivering material will be covered.	Contractor	Contractor	1	
	Loss or damage to vegetation.	Replanting plan to be developed.	Contractor	Contractor	400000 Note 4	
	Failure to properly manage/store topsoil, leading to degraded and substandard site reclamation and re-vegetation.	Cleary defined topsoil storage and handling in contract specification and follow up with regular inspection \& monitoring and reporting	Contractor	Contractor	1	
	Damage to agricultural lands, including drainage and irrigation infrastructure.	Liaise effectively with PAPs before start of construction, maintain dialogue, develop a grievance procedure, strictly control machinery and vehicle access and reinstate all affected areas.	Contractor	Contractor	1	
	Livestock resources damaged by machinery and vehicles.	Liaise effectively with PAPs before start of construction, maintain dialogue, develop a grievance procedure, strictly control machinery and vehicle access, and consider fencing for protection.	Contractor	Contractor	1	

Phase,	Issue	Mitigation	Institutional responsibility		Cost	
			Install	Operate	Install	Operate
	Inadequate prevention of construction-related noise from vehicles, asphalt plants, crushing and batch plants and equipment.	The plants and equipment used for construction will strictly conform to MEP noise standards.	Contractor PMC	Contractor	1	
	Inadequate prevention of air pollution from asphalt plants, crushing and batch plants and equipment.	The plants and equipment used for construction will strictly conform to MEP air quality standards and their siting be screened for sensitive receptors.	Contractor PMC	Contractor	1	
	Disturbance to residents.	Working hours/activities will be adjusted to avoid lownoise times.	Contractor	Contractor	1	
	Protection of workers H\&S.	Noise standards for industrial enterprises will be strictly enforced to protect construction workers from noise impacts, in accordance with international HSE procedures. All Project works will adhere to international H\&S standards, including minimum PPE standards, eg hard hat, safety boots, ear defenders and noise exposure limited to 85 dBA .	Contractor	Contractor	1	
	Residents injured by construction traffic and machinery.	Conduct safety awareness campaigns, focussing on schools and children.	Contractor	Contractor	1	

Phase, location	Issue	Mitigation	Institutional responsibility		Cost	
			Install	Operate	Install	Operate
	Workers injured during construction.	Implement international HSE standards in all contracts.	Contractor	Contractor	1	
	Illegal or excessive borrowing may damage archaeological or land resources.	No earth borrowed from unauthorised locations.	Contractor	Contractor	1	
	Loss and damage to cultural resources.	Conducted field surveys prior to construction and maintain watching brief during works, with clear procedures for protection and documentation (late finds protocol) incorporated into construction contracts. Eg Sauran ancient city. This must involve the Archaeological Institute and any other relevant authorities.	DE, Roads Committee	DE, Roads Committee	See note 14 Table 7-2	
	The Archaeological Institute must give approval/clearance prior to work commencing.	To comply with WB requirements, it is recommended that written authorization from the Archaeological Institute is received prior to project work proceeding			1	
	Reduced land or property values.	Establish and maintain dialogue with PAPs to reduce adverse effects as part of ongoing design and construction.	Roads Committee.	Roads Committee.	1	
	Contamination of soil or water resources.	Contaminated or hazardous waste such as bitumen waste to be dumped in selected areas \& approved by	Contractor	Contractor	1	

Phase,	Issue	Mitigation	Institutional responsibility		Cost	
			Install	Operate	Install	Operate
		MEP/MOTC or its consultants. All waste disposal to comply with a Waste Management Plan, to be developed at the start of construction.				
	Pollution of groundwater and soils during demolition of fuel stations.	Develop working method statement to include effective management of fuels.	Contractor	Contractor	1	
	Damage to water resources.	All abstractions must be licensed/approved by relevant authorities.			1	
	Soil and water pollution.	Construction vehicles and equipment will be maintained and refuelled at protected refuelling stations. Fuel storage and handling sites located away from drainage channels and important water bodies Design and construction of collection and treatment facilities for highway runoff, with a particular priority in sensitive water areas and in proximity to irrigated agricultural lands	Contractor	Contractor	1	
	Soil and water poilution.	Develop plans for cement and wash-water management.	Contractor	Contractor	1	
	Vegetation removed, soil compacted, landscape and vegetation impacted.	Remove topsoil layer initially and afterwards decompact routes and reinstate, except where a fire buffer zone is required.	Contractor	Contractor	1	

-

Phase, location	Issue	Mitigation	Institutional responsibility		Cost	
			Install	Operate	Install	Operate
Construction Monitoring	Existing in-country procedures do not include rigorous on-site monitoring; relying on procedural audits applied for in advance (Chief Prosecutor's Office) and not suitable at all for the Project to evaluate E\&S performance.	Include the requirements for Environmental Aspect Management Plans and on-site monitoring by Contractors in the construction contracts, supplemented by effective monitoring and auditing by World Bank.	Roads Committee, World Bank	Roads Committee, World Bank	1	
	SNIP currently contain no design specifications for highway run-off treatment, to protect water, ecological or agricultural resources. Thus highway run-off, including that from vehicle accidents, has potential to damage land and water resources.	For all sensitive land or water resources (eg river approaches and irrigated crop areas) include for the design of formalised highway run-off treatment, with retention ponds as a minimum. Develop effective spill response procedures.	Roads Committee, DE	Roads Committee, DE	1	
1. costs allocated for in Table 7-2; Contractor responsibility, especially $\mathrm{E} \& \mathrm{~S}$ staff resource working alongside highway engineers. 2. costs allocated for in Table 7-2; Consultant support to RC et al. 3. costs to be included as part of the contract for the PMC 4. costs as per Table 7-2; assume planting cost of $\$ 20000 / \mathrm{km}$; assume 20 km of planting for essential landscaping through steppe $=\$ 400000$.						

Table 7-5 Environmental Monitoring Plan Category B

						Responsibilities		Cost	
Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitored'type of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Install	Operate	Install	Operate
$\begin{aligned} & \text { 등 } \\ & 00 \\ & 0 \\ & \text { ㄹ } \\ & \text { ㅇ } \\ & 0 \\ & 0 \end{aligned}$	Damage to irrigation and drainage infrastructure	Agricultural lands	Visual observations, discussions with PAPs	weekly	Compliance to ESIA and social commitments	Contractor E\&S staff. Note 1.		Costs included in staff resource budgets in Table 7-2. Note 1.	
	Water quality	Surface waters, key rivers	Water quality analysis	Monthly	ESIA compliance			1	1
	Dust	At construction sites	Visual monitoring	Regularly site visits	Check environment and H\&S requirements			1	1

						Responsibilities		Cost	
Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredtype of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Install	Operate	Install	Operate
	Waste water from construction camps and portable sites	At construction camps and portable facilities at work sites	Monitoring of appropriate installation and operation of wastewater units, latrines and septic tanks	Regularly site visits	Check environment requirements are being maintained			1	1
	Solid waste management.	At all sites	Visual monitoring, paperwork, audit trail	Regularly site visits	Check environment requirements are being maintained			1	1
	Disposal of solid wastes	At the disposal sites	Visual monitoring	Regularly site visits	Check environment requirements are being maintained			1	1

						Responsibilities		Cost	
Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredtype of monitoring equipment?	When: is the parameter to be monitored trequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Install	Operate	Install	Operate
	Construction materials	At the work sites	Paperwork, records of source	Weekly	Check environment requirements are being maintained			1	1
	Construction material extraction	At the borrow pits	Visual monitoring	Monthly	Check environment requirements are being maintained			1	1
	Hazardous material, fuels and oils management	At construction sites	Visual monitoring, paperwork, auditing	Regularly site visits	Check environment requirements are being maintained			1	1

Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredtype of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Responsibilities		Cost	
						Install	Operate	Install	Operate
	Protection of habitats	At construction sites	Visual monitoring	weekly	Check environment requirements are being maintained			1	1
	Restoration of temporary lands used	At construction sites	Visual monitoring	Regularly site visits	Check environment requirements are being maintained			1	1
	Noise	Near the settlements	Portable noise meters or observation	Regularly site visits	Check environment requirements are being maintained			1	1

Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredtype of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Responsibilities		Cost	
						Install	Operate	Install	Operate
	Relocation of services	Construction sites	Observation	Regularly site visits	ESIA compliance			1	1
	Loss and damage to cultural resources	Construction sites	Observation	Regularly site visits	ESIA compliance			1	1
	Community tension and disruption.	Construction sites	Observation	Regularly site visits	ESIA compliance			1	1
	Spread of disease, including STIs	Settlements	Observation, discussions with representatives	Monthly	ESIA compliance			1	1

						Responsibilities		Cost	
Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredtype of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Install	Operate	Install	Operate
	Protection of workers H\&S	Construction sites	Observation	Regularly site visits	ESIA compliance			1	1
	Residents injured by construction traffic and machinery	Construction sites	Observation, records	Regularly site visits	ESIA compliance			1	1
	Livestock damaged by machinery and vehicles.	Construction sites	Observation, records	Regularly site visits	ESIA compliance			1	1
	Topsoil management	Construction sites	Observation, records	Regularly site visits				1	1

						Respon		Cost	
Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredtype of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Install	Operate	Install	Operate
	Emission from construction vehicles and machinery	Construction sites	Observation, records	Regularly site visits				1	1
	Traffic Disruption	Construction sites	Visual monitoring of designated routes	Regularly site visits	ESIA compliance			1	1
	Driver safety	Accident statistics	Information from Roads Committee	Annually	Design review		RC	2	
	Animal road kills	Road alignment	Information from MEP	Annually	Design review		MEP	2	
	Water quality	Surface waters, key rivers	Water quality analysis	Quarterly	ESIA compliance		MEP	2	

Phase	What: parameter is to be monitored?	Where: is the parameter to be monitored?	How: is the parameter to be monitoredtype of monitoring equipment?	When: is the parameter to be monitored frequency of measurement or continuous?	Why: is the parameter to be monitored (optional)?	Responsibilities		Cost	
						Install	Operate	Install	Operate
Notes									

8. REFERENCES

http://www.unece.org/env/epr/epr studies/kazakhstan\%201I.pdf
Republic of Kazakhstan, Natural settings and natural resources, 3 volumes. Ministry of Environmental Protection, Ministry of Education and Science, Department of Science and Institute of Geography. Almaty, 2006.

Sauran Medieval Archaeological Complex in South Kazakhstan. Dr. Erbulat A. Smagulov, Institute of Archaeology, National Academy of Science of Kazakhstan, Almaty, Kazakhstan. e-mail: azret sultan@mail.ru
Atlas of Republic of Kazakhstan, Part -1: The Natural Conditions and Resources. under the editorship of N.A. Iskakova, A.P.Medeu, Almaty, 2006, -506p.

Atlas of Republic of Kazakhstan, Part -3: The Environment and Ecology. under the editorship of N.A. Iskakova, A.P.Medeu, Almaty, 2006, -506p.

World Bank. Environmental Assessment Sourcebook Volume II Sectoral Guidelines.
World Bank. TWU-31: Roads and the Environment Handbook

Appendix 1 Project Description

Project Description

The section of the road financed by the World Bank passes through two administrative regions of Kazakhstan: South Kazakhstan and Kyzylorda Regions. The length of road within South Kazakhstan Region is 294 km , including bypassing the administrative centre of the region Shymkent city. This plot of the road falls into the first technical category (I), as defined by Kazakhstan standards.
The length of the road within Kyzylorda Region is 810 km , including bypass of settlements representing district centres (district is a territorial unit of region) and administrative centre of the region Kyzylorda city. This section of the road falls into the second technical categories (II), except the East segment of the road between the border of South-Kazakhstan Region and Kyzylorda city, whose length is 226 km.

Section 1 - 2231km of M-32highway "Samara-Shymkent" until 674 km of 39 highway "AlmatyTermez"
 The project for this road section is developed by Kazakhstan Zholdary JSC.
 In accordance with the project documentation this section of road belongs to I technical category. The construction of road bypass around the Shymkent city is planned along the new route on the north of the existing bypass road from 2231 km road sign of $\mathrm{M}-32$ highway until 674 km road sign of $\mathrm{M}-39$ highway.

Pic. 1 Shymkent Road Bypass
The project includes construction of ring-type flyover in 2231 km road sign of joining of new Shymkent bypass to the M-32 highway. The clover-leaf flyover is planned to be built on intersection of new Shymkent bypass and highway "Shymkent-Zhanatas". The construction of tube-type flyover is designed at 813 km road sign on intersection of projected bypass around the Shymkent with existing M-39 "AlmatyTermez" highway. It is planned also to build 5 different underpasses and a new bridge.

Photo 1 - fragment at section № 1
Section №2, 2260-2231 kilometres of M-32 "Samara-Shymkent" highway
JSC "Kazakhstan Zholdary" develops the project of this road section.
In accordance with the project documentation this section of road belongs to I technical category. Project offers enlargement of existing 2-lane M-32 "Samara-Shymkent" road by construction of 2 additional lanes.

Section №3, 2231-2135 kilometres of "Samara-Shymkent" M-32 highway

JSC "Kazakhstan Zholdary" develops the project of this road section.
In accordance with the project documentation this section of road belongs to technical category I. Project offers enlargement of existing 2-lane M-32 "Samara-Shymkent" road by construction of 2 additional lanes.

Pic. 2. M 32 road 2231-2135 km section
The construction of tube-type flyover is planned at 2200 km road sign of M 32 highway in place of intersection of existing road to Zhanakorgan settlement and new one. Also the clover-leaf flyover is planned to be built on intersection of M 32 road and "Kyzylzhar-Shilik"road, at 2172 kilometre road sign.
The reconstruction project provides construction of 2932 meter length overpass in Temirlanovka settlement ($2221-2224 \mathrm{~km}$), 4 underpasses, 6 bridges and renewal and reconstruction of 10 bridges.

Section №4, 2135-2057 kilometres of "Samara-Shymkent" M-32 highway
LLC "Shymkent KazDorProekt" develops the project of this road section.
In accordance with the project documentation and requirements specification this section of road belongs to I technical category. Project offers enlargement of existing 2-lane M-32 "Samara-Shymkent" highway by construction of 2 additional lanes, with new construction of lkan settlement bypass (2123-2135 km). Turkestan bypass is based on existing 2-lane detour road, which is going to be enlarged with additional 2 lanes.

Pic. 3. M 32 highway 2135-2057 km section
The Project provides construction of clover-leaf flyover on intersection of M 32 highway and "Shornak Aktobe settlement" road, at $2080(+500)$ kilometre road sign, tube-type flyover at the contiguity section of M 32 highway with existing Turkestan bypass road at $2108(+500)$ kilometre road sign, clover-leaf flyover on intersection of existing Turkestan bypass road at $2108(+500)$ kilometre road sign with R-31
"Turkestan - Kentau" road, tube-type flyover at the contiguity section of M 32 road with existing Turkestan bypass road at 2114 kilometre road sign and tube-type flyover at the contiguity section of existing Ikan settiement bypass road with lbata settlement.
Also according to project decisions construction of 10 new bridges and underpasses and renewal of a bridge are included.

Section №5, 2057-1980 kilometres of "Samara-Shymkent" M-32 highway
LLC "KazNIIPI DorTrans" develops the project of this road section.
in accordance with the project documentation this section of road belongs to I technical category. Project offers reconstruction of existing 2-lane M-32 "Samara-Shymkent" highway by enlargement with 2 additional lanes and construction of a Zhanakorgan settlement bypass from 1991 km till 1999 (+500) km.

Pic. 4. M-32 road 2057-1980 km section
The Project provides construction of clover-leaf flyover on intersection of M 32 highway and " Zhanakorgan - Shalakiya" highway, 2 underpasses and a new bridge

Section №6, M-32 "Samara-Shymkent" road 1980-1917 kilometres
LLC "KazDorProject" develops the project of this road section.
In accordance with the project documentation this section of road belongs to I technical category. Project offers reconstruction of existing 2-lane M-32 "Samara-Shymkent" highway by enlargement with 2 additional lanes and construction of a 11 kilometres length Shieli bypass from 1934 (+700) km till 1945 (+500) km

Pic. 5. M 32 road 1991-1917 km section

Section №7, 1917-1807 kilometres of M-32 "Samara-Shymkent" highway
LLC "KazDorNII" develops the project of this road section.
In accordance with the project documentation this section of road belongs to I technical category. Project offers reconstruction of existing 2-lane M-32 "Samara-Shymkent" road by enlargement with 2 additional lanes.

In Accordance with project decisions construction of 5 bridges is provided on this section.

Section № 81837-1807 km of M-32 «Samara-Shymkent» highway new Kyzylorda bypass.
JSC "Institute Geoproject" develops the project of this road section.
In accordance with the project documentation this section of road belongs to II technical category. Project offers construction of Kyzylorda bypass on new route from 1830 km road sign till 1808 km road sign of M 32 «Samara-Shymkent» highway and reconstruction of existing road section $1830-1837 \mathrm{~km}$.

The construction of a new Kyzylorda bypass includes:
construction of tube-type flyover at the contiguity section of new Kyzylorda bypass with existing M 32 highway at 1830 kilometer road sign;
construction of clover-leaf flyover on intersection of new Kyzylorda bypass and R-68 "Kyzylorda - Aydarly" highway, at 23 kilometer road sign;

- construction of clover-leaf flyover on intersection of new Kyzylorda bypass and "Kyzylorda Dachnyi Massive" highway, at 25 kilometer road sign;
- construction of tube-type flyover at the contiguity section of new Kyzylorda bypass with existing M 32 highway at 1808 kilometer of road sign.

The Project provides construction of 8 underpasses and 4 bridges over Syrdaria River and Shirkelinsky channel.

Photo 8 - The place of new bridge construction over Syrdaria river (Kyzylorda bypass)

Photo 10 - The place of new bridge over Shirkeliisky channel construction

Photo 9 - Intersection place of new Kyzylorda bypass with existing R-68 highway

Photo 11 - Planning road construction direction

Section № 91807-1702 km of M-32 «Samara-Shymkent» highway

JSC "Engineering Center Astana" develops the project of this road section.
In accordance with the project documentation this section of road belongs to II technical category. Project offers reconstruction of existing road.
New construction planned on Shagan settlement bypass from $1767+200 \mathrm{~km}$ road sign till 1757 km road sign and on Akzharma settlement from $1749+100 \mathrm{~km}$ road sign till $1741+800 \mathrm{~km}$ road sign.

Pic 8. Shagan and Akzharma settlement bypasses.
Project provides construction:

- construction of tube-type flyover at the contiguity section of M-32 «Samara-Shymkent» highway with Chirkeili at $1775+200$ kilometer of road sign;
- construction of clover-leaf flyover on intersection of M - 32 «Samara-Shymkent» highway and "AkkyrZholagash" highway, at $1721+480$ kilometer of road sign;
In accordance with the project construction of 4 underpasses, 20 new bridges and reconstruction of 3 existing bridges is planned

Photo 12 - The beginning of Shagan settlement bypass

Photo 13 - The end of Shagan settlement bypass

Photo 14 - The beginning of Akzharma settlement bypass

Photo 15 - The end of Akzharma settlement bypass

Section № 10 1702-1578 km of M-32 «Samara-Shymkent» highway.
LLC "KazDorNil" develops the project of this road section.
In accordance with the project documentation this section of road belongs to II technical category. Project offers reconstruction of existing 2-lane M-32 "Samara-Shymkent" highway.
New construction in project is represented with road flattening near Zhosaly settlement from 1649 km till 1634 km of M 32 highway.

Pic 9. Zhosaly settlement bypass

Project provides construction:

- of tube-type flyover at the contiguity section of M-32 «Samara-Shymkent» highway with Akzhar settlement at 1692+200 kilometre road sign;
- of tube-type flyover at the contiguity section of Zosaly road flattening with road to Zhosaly at 8+700 kilometre road sign;
-4 underpasses at flyovers and 6 new bridges
Also project provides reconstruction of 3 existing bridges.

Construction aspects

The width of the bypass is assumed to be 9 meters, the width of storage area for the fertile soil layer taken - 5 meters.

It is assumed that the start point of the bypass route is the $1578^{\text {th }} \mathrm{km}$ of the existing motor road within the Karmakshinskiy region, the end point of the route - at the boundary of the Zhalagashskiy region.
It is necessary to arrange the construction sites for storage of the road-building materials, parking of the machinery and equipment, placement of the building constructions at 5 km interval near the each engineering structure (25 pcs . in total) with the square of $0.4-1$ ha.
The construction of two road interchanges with the square of 5 ha approximately is planned at 1692 km (turn to Akzhar settlement), at 1643 km (passby of Zhosaly settlement) and at $1635 \mathrm{~km}+500$ (overhead road at intersection with the railroad) on the right of Korkyg r/station - Ordazy ristation.
It is planned to construct the area of the bypass of Zhosaly settlement 15 km long. The start point will be at $1635 \mathrm{~km}+500$, the end point - at $1649 \mathrm{~km}+700$.
It is planned to construct the cattle routes (6 pcs. in total, 4×2.5) at $1694 \mathrm{~km}+150$ (turn to Akzhar settlement), at $1682 \mathrm{~km}+000$ (turn to Sh-International settlement), at $1672 \mathrm{~km}+200$ (turn to Zhanazhol settlement), at $1662 \mathrm{~km}+000$ (turn to lirkol settlement), at $1687 \mathrm{~km}+000$ (turn to Aktobe settlement) and at $1688 \mathrm{~km}+500$. For reconstruction of the motor road it is planned to use twelve concentrated borrow pits with the square of 3 ha each which are located off the bypass route at $7-10 \mathrm{~km}$ interval ($1584 \mathrm{~km}, 1594 \mathrm{~km}, 1604 \mathrm{~km}, 1614$ $\mathrm{km}, 1624 \mathrm{~km}, 1634 \mathrm{~km}, 1654 \mathrm{~km}, 1674 \mathrm{~km}, 1643 \mathrm{~km}, 1664 \mathrm{~km}, 1683 \mathrm{~km}, 1690 \mathrm{~km}$) in $50-60 \mathrm{~m}$ to the left of the existing motor road.

Section № 11 1578-1398 km of M-32 «Samara-Shymkent» highway.

LLC "KazNIIPI DorTrans" develops the project of this road section.
In accordance with the project documentation this section of road belongs to II technical category. Project offers reconstruction of existing 2-lane M-32 "Samara-Shymkent" highway.
Exclusion is the construction of new direction - road flattening near Kazalinsk at 1476 km till 1470 km road sign.

Pic 10. Straitening of road alignment near Kazalinsk
Project of construction and reconstruction of this section provides:

- construction of incomplete clover-leaf flyover with underpass over rail road on intersection of M-32 «Samara-Shymkent» highway and MO RK highway, at $1569+200 \mathrm{~km}$ road sign;
- construction of tube-type flyover at the contiguity section of M-32 «Samara-Shymkent» highway with Toretam settlement at $1567+600$ kilometre of road sign
- construction of tube-type flyover at the contiguity section of M-32 «Samara-Shymkent» highway with Kazalinsk settlement at 1474 km of road sign
- construction of 2 new bridges and 4 underpasses.

Construction aspects

The width of bypasses is 10 meters, the width of storage area for the fertile soil layer taken -5 meters. $1398 \mathrm{~km}-1443+800$.
It is assumed that the start point of the bypass route is the $1398^{\text {th }} \mathrm{km}$ of the existing motor road within the Aralskiy rayon of Kyzylorda region, the end point of the route - at the boundary of Kazalinskiy rayon of Kyzylorda region. From $1398 \mathrm{~km}+000$ till $1443 \mathrm{~km}+800$ the bypass shall be laid on the left along the motor road under renovation (in the line of kilometerage increase).
It is necessary to arrange the construction sites for storage of the road-building materials, parking of the machinery and equipment, placement from the building constructions at 1 km interval and near the each engineering structure (12 pcs. in total) with the square of 0.5-1 ha.
For the motor road reconstruction it is planned to use fourteen concentrated borrow pits with the square of 1 ha each which are located off the bypass route at 10 km interval ($1443 \mathrm{~km}, 1433 \mathrm{~km}, 1473 \mathrm{~km}, 1423 \mathrm{~km}$, $1412 \mathrm{~km}, 1402 \mathrm{~km}$) in $50-60 \mathrm{~m}$ to the left of the existing motor road.

1443 km 1535

in the area of Kazaly settlement it is planned to arrange two cattle routes.
The width of the bypass is assumed to be 10 meters.
It is assumed that within the Kazalinskiy rayon of Kyzylorda region the start point of the bypass route is at the boundary of the Aralskiy rayon of Kyzylorda region, the end point of the route - at the boundary of the motor road in Karmakshynskiy rayon of Kyzylorda region. From $443 \mathrm{~km}+800$ till $1487 \mathrm{~km}+000$ it is required to lay the bypass on the right, from $1487 \mathrm{~km}+000$ till $1535 \mathrm{~km}+000$ - along the renovated motor road (in the direction of Km increase). It is necessary to establish the construction sites for storage of the road-building materials, parking of the machinery and equipment, placement of the building materials and constructions at 10 km interval and near the each engineering structure (40 pcs . in total) with the square of 0.5-1 ha.
For reconstruction of the motor road it is planned to use nine concentrated borrow pits with the square of 2 ha each which are located off the bypass route at 10 km interval ($1453 \mathrm{~km}, 1463 \mathrm{~km}, 1473 \mathrm{~km}, 1483 \mathrm{~km}$, $1493 \mathrm{~km}, 1503 \mathrm{~km}, 1512 \mathrm{~km}, 1525 \mathrm{~km}, 1535 \mathrm{~km}$) in $50-60 \mathrm{~m}$ to the left of the existing motor road. For the sand depositories it is necessary to provide the borrow pits with the square of 10 ha which are located off the bypass route for temporary use for a term of 20 years.
There are 3.0 ha required for development of the shift camp. It is planned to construct one road
interchange with the square of 10 ha at $1474^{\text {in }} \mathrm{km}$. There were areas by 1.5 ha each allocated for construction of the inspection pits (2 pcs.) at $1474^{\text {th }} \mathrm{km}$ and $1522^{\text {th }} \mathrm{km}$ (approximately). The lands with the square of 0.5 ha each were allocated for arrangement of the rest areas (4 pcs .).

$1547-1578 \mathrm{~km}$

The width of the bypass is assumed to be 10 meters, the width of storage area for the fertile soil layer taken - 5 meters.
It is assumed that the start point of the bypass route is the $1547^{\text {th }} \mathrm{km}$ of the existing motor road within the Karmakshinskiy rayon of Kyzylorda region, the end point of the route - at the boundary of the Kazalinskiy rayon of Kyzylorda region. From $1547 \mathrm{~km}+000$ till $1578 \mathrm{~km}+800$ the bypass shall be laid on the right along the motor road under renovation (in the line of kilometerage increase).
It is necessary to arrange the construction sites for storage of the road-building materials, parking of the machinery and equipment, placement of the building constructions at 1 km interval and near the each engineering structure (12 pcs . in total) with the square of $0.5-1$ ha.
The construction of two road interchanges with the square of 5 ha approximately is planned at 1567 $\mathrm{km}+50$ and $1569 \mathrm{~km}+200$.
For reconstruction of the motor road it is planned to use fourteen concentrated borrow pits with the square of 1 ha each which are located off the bypass route at $6-10 \mathrm{~km}$ interval $(1554 \mathrm{~km}, 1565 \mathrm{~km}, 1575 \mathrm{~km}, 1423$ $\mathrm{km}, 1584 \mathrm{~km}, 1594 \mathrm{~km}, 1604 \mathrm{~km}, 1614 \mathrm{~km}, 1624 \mathrm{~km}, 1634 \mathrm{~km}, 1644 \mathrm{~km}, 1654 \mathrm{~km}, 1664 \mathrm{~km}, 1674 \mathrm{~km}$, $1683 \mathrm{~km}, 1690 \mathrm{~km}$) in $50-60 \mathrm{~m}$ to the left of the existing motor road.

Section № 12 1398-1240 km of M-32 «Samara-Shymkent» highway.

LLC "Kustanai DorProject" develops the project of this road section.
In accordance with the project documentation this section of road belongs to II technical category. Project offers reconstruction of existing 2-lane M-32 "Samara-Shymkent" highway. Exclusion is the new construction of Aralsk bypass from 1361 till 1350 km road sign.

At this section project provides construction of tube-type flyover and underpass over rail road at the contiguity section of M-32 «Samara-Shymkent» highway with Araltuz enterprise.

Construction aspects

Several construction aspects have been identified by the Design engineer and are presented below.

Appendix 2 Route Maps

Фрагмент участка дороги. Объезд Aralsk 1240-1395
Road section fragment. Aralsk bypass 1240-1395

$14,4,4$

Участок дороги - 1917-1980
Road section - 1917-1980
Категория/Category
II

$$
1
$$

/

$$
1
$$

$$
f
$$

人

Фрагмент участка дороги. Объезд Жанакоргана 1996-1991
Road section fragment. Zhanakorgan bypass 1996-1991

$$
\left\{\begin{array}{l}
0 \\
y^{0} \\
y^{-1} \\
\\
\end{array}\right.
$$

$=1$

i

Фрагмент участка дороги. Эстакада в поселке Темирлановка 2224-2221
Road section fragment. Temirlanovka settlement overpass 2224-2221

Appendix 3 Land Tenure

Appendix 4 Environmental Approvals

 МИНИСТРЛІГІ
Кызылординский областной департамент Комитета автомобильных дорог Министерства транспорта и коммуникаций РК

Заключение

 государственной экологической экспертизына рабочий проект «Реконструкция участка автомобильной дороги «Граница РФ (на Самару) - Шымкент, через гг. Уральск, Актобе, Кызылорда» км 1240-1398, участок км. 1240-1330 и км. 1330-1398»

Разработчик: Проектный институт «Кустанайдорпроект» (ГЛ 01142P от 10.12.2008г.).

Заказчик: Кызылординский областной департамент Комитета автомобильных дорог Министерства транспорта и коммуникаций РК.

На рассмотрение государственной экологической экспертизы 20.11.08 г. вх. №3985 поступили материалы: Том IV книга 1 «Оценка воздействия на окружающую среду», книга 2 «Отвод и рекультивация земель».

Срок строительства: 2009-2012гг.

Общие сведения

Рабочий проект «Реконструкция участка автомобильной дороги «Граница РФ (на Самару) - Шымкент, через гг. Уральск, Актобе, Кызылорда» км 1240-1398, разработан в связи с переводом дороги во II-ю техническую категорию, а также в щелях совершенствования конструкции дорожной одежды, применения новых материалов и технологий и в связи с изменением нормативно-технической базы.

Начало реконструируемого участка соответствует 1240 км, конец- 1398 км. (общая протяженность 158 км.) существующего километража участка автодороги М-32 и разбит на два участка: 1240-1330 км.и 1330-1398 км.

Проектируемый участок дороги км. 1330-1398 имеет пересечения несколькими инженерными коммуникациями: подземный кабель связи, воздушные линии связи и электропередач, водопровод и на ПК 964+84 строящийся нефтепровод, на перспективу параллельно прокладка газопровода БейнеуСамсоновка.

Проектом предусматривается уширение земляного полотна в необходимых местах, устройство дорожной одежды капитального типа, замена искусственных сооружений, реконструкция пересечений и примыканий, обустройство дороги, рекультивация земель, замена и установка новых дорожных знаков и ограждений, устройство автобусных остановок с автопавильонами, строительство площадок отдыха. Предусмотрено строительство и обустройство зданий и сооружений дорожной службы: дорожно-эксплуатационных пункта (ДЭП) и дорожноэксплуатационного управления (ДЭУ) поста дорожной полиции на $1227+69$.

Уширение земляного полотна отсыпается из притрассовых и внетрассовых грунтовых резервов.

Число полос движения - 2 , ширина полосы движения - 3,75 м., ширина земляного полотна - 15,0 м., ширина проезжей части - 7,5 м., ширина обочины 3,75 м.

Определена потребность в дорожно-строительных материалах, осуществлена привязка к внетрассовым карьерам. Выполнено обследование почв участка работ.

Для реконструкции участка автомобильной дороги требуется отвод земель общей площадью 676,87 га, из них в постоянное пользование (под автодорогу, ДЭП, ДЭУ)-100,16 га, во временное пользование (под притрассовые и внетрассовые грунтовые резервы, площадки ДСМ, объездную дорогу) - 576,71 га.

Притрассовые грунтовые резервы расположены почти на всем протяжении участка проектируемой автомобильной дороги за исключением мест устройства искусственных сооружений. Земляные работы на них производятся бульдозером с непосредственным приданием откосам уклона 1:4. Глубина резервов 1,0 м. Предварительно снятый плодородный слой хранится во временных валках шириной $3,0 \mathrm{~m}$. Ориентировочная высота валка до $2,0 \mathrm{~m}$.

Для складирования дорожно-строительных материалов проектом разработаны площадки ДСМ. На всех площадках по окончании работ по реконструкции автодороги производится планировка поверхности бульдозером. На площадке ДСМ №l предусмотрено снятие плодородного слоя почвы мощностью 17 см. На остальных площадках снятие плодородного слоя почвы не предусматривается из-за низкого содержания гумуса.

Объездная дорога предусмотрена проектом в соответствии с требованиями $\mathrm{BCH} 41-92$ «Инструкция по организации движения в местах производства работ на автомобильных дорогах Республики Казахстан».

Временная объездная дорога расположена по всей протяженности участка (с левой и правой стороны в зависимости от ситуации, рельефа и т.д.) на расстоянии $50-100$ м. от реконструируемой дороги.

На участках переходов через водотоки укладываются металлические трубы.

Оценка воздействия на окружающую среду

Приведены географическая характеристика района производства работ, климат, почвы, уровень стояния грунтовых вод.

Реконструируемый участок расположен в V дорожно-климатической зоне. Климатическая характеристика района приводится по данным наблюдений метеостанции г.Аральск: климат резко континентальный. Абсолютный максимум и минимум температуры самого теплого и холодного месяцев $+45^{\circ} \mathrm{C}$ и $-38^{\circ} \mathrm{C}$ соответственно. Среднегодовая температура воздуха $7,4^{\circ} \mathrm{C}$.

Среднее годовое количество осадков в пределах 135 мм, в том числе: в зимний период - 59 мм. Толщина снежного покрова с 5% вероятностью - 22 см. нормативная глубина промерзания грунтов $149-220$ см. Наибольшая повторяемость ветров в северо-восточном направлении, со скоростью ветра в январе $-6,5 \mathrm{~m} / \mathrm{c}$, июле $-24 \mathrm{~m} / \mathrm{c}$.

По агроклиматическому районированию участок дороги расположен в зоне пустынь. Наиболее широким распространением в районе работ пользуются почвы в пределах северной части дороги преимущественно бурые солонцеватые с такырами, в центральной и южной - песчаные, бурые.

Растительность в пределах района в зависимости от рельефа разная: встречаются серополынноразнотравная, биюргуново-солянковые группировки, саксаул, жантак, жузгун, водоросли, лишайники, солянки, черная полынь, эфедры.

Размер санитарно-защитной зоны ДЭУ, ДЭП установлен с учетом санитарных требований по размещению АЗС для заправки грузовых автомобилей.

Площадка под строительство производственной базы ДЭП располагается в Аральском районе на ПК $437+00$ слева (северо-западнее г.Аральска на расстоянии 75,5 км. и 43,7 км. до границы с Актюбинской областью), ДЭУ-49 располагается на ПК 1225+00 (на расстоянии 1 км от г.Аральска).

Состав объектов и сооружений ДЭП: АЗС со складом ГСМ с заправочными колонками, для дизельного топлива, бензина, склады для хранения материальных ценностей, песка и соли, предназначенных для подсыпки дорог в период гололеда, ремонтная - механическая мастерская (рассчитана на текущий ремонт дорожностроительной техники), боксы теплые и холодные (для стоянки крупногабаритной дорожной техники), навес для временного хранения техники, участок по ремонту дорожных знаков, открытый склад для хранения угля, площадка для хранения золы.

Отопление предусмотрено от печи (тепловая мощность 345 кВт), на твердом топливе (используется уголь Экибазтузского бассейна). Годовой расход 200 тонн, отопительный период 179 дней в году. Источник выброса - труба высотой $6,0 \mathrm{~m}$. от уровня земли, диаметр 0,5м. Подача топлива, выгреб шлака осуществляется вручную. Газоочистные установки отсутствуют.

Состав объектов и сооружений ДЭУ.
Комплекс зданий ДЭУ принят в соответствии с п. 11.2 СНип РК 3.03.-09-2006.
Производственная база ДЭУ включает административный корпус (2 -х этажное здание), ремонтная - механическая мастерская, материально-технический склад, навес для хранения материалов, котельная, обогревательный пункт, склады для песка, АЗС (45м3), очистные сооружения (для очистки ливневых стоков), склад сыпучих материалов, теплая стоянка, гараж, резервуар для питьевой воды.

Отопление предусмотрено от печи (тепловая мощность 600 кВт), на твердом топливе (используется уголь Экибазтузского бассейна). Используются котлы марки КВ-Р-200. Годовой расход 332 тонны, отопительный период 179 дней в году. Источник выброса - труба высотой 6,0 м. от уровня земли, диаметр 0,5 м. Подача топлива, выгреб шлака осуществляется вручную. Газоочистные установки отсутствуют.

Водоснабжение. Для обеспечения обслуживающего персонала ДЭП питьевой и технической водой, проектом предусмотрено бурение разведочноэксплуатационной скважины №1759 на 1285 км, прокладка участка сети водопровода.

Водоснабжение для технических и хоз-бытовых нужд комплекса ДЭУ предусмотрено за счет воды водозаборных узлов г.Аральск и п.Аралкум

Водоотведение. На территории ДЭП, ДЭУ запроектированы выгребные ямы, предназначенные для хозяйственно-фекальных стоков, надворные туалеты на 2 очка с выгребной ямой. Для очистки ливневых стоков с площадки АЗС предусмотрены очистные сооружения (работают в летнее время), очищенные стоки собираются в накопители стоков, откуда вывозятся в места, согласованные СЭС или используются для полива территории.

Атмосферный воздух Выполнена оценка воздействия на аттмосферный воздух выбросов загрязняющих веществ от реконструкции автодороги, строительства и эксплуатации ДЭП и ДЭУ. Приведен перечень загрязняющих веществ от источников выделения - дымовые трубы печей, сварочные работы, хранение ГСМ.

В рабочем проекте определены основные виды воздействия на окружающую среду при реконструкции автодороги- выбросы от дорожных машин и земляных работ.

Произведены расчеты рассеивания ЗВ в атмосфере (программ «ЭРА» версия 1.7). Нормативы эмиссий в окружающую среду предлагается установить в объеме, определенном расчетным путем на основании нормативно-методических документов, утвержденных МООС РК.

Валовый выброс вредных веществ от стационарных источников загрязнения атмосферы рассчитан на период строительства (реконструкции) дороги (20092012гг.).

Перечень загрязияющих веществ, выбрасьваемих в атносферу

Код загр. веце- crba	Наименование вещества	ПДК максим. разовая, Mr/m ${ }^{3}$	ПДК среднесуточная, $\mathrm{Mr} / \mathrm{M}^{3}$	OБYB ориентир. безопасн. yB,mr/m3	Kлace опасности	Выброс вещества	
						r/c	т/год
1	2	3	4	6	7	8	9
Приэксплуатачии объектов и сооружений ДЭП иДЭУ							
0123	диЖелезо триоксид		0,04		3	0,026	0,0007
0143	Марганец и его соединения	0,01	0,001		2	0,003	0,00007
0304	Азот оксид (II)	0,4	0,06		3	0,064	1,193
0415	Углеводороды предельнье Cl-C5	-	-	50	-	0,483	0,03
0416	Углеводороды предельные C6-C10	-	-	30	\checkmark	0,118	0,007
0501	Пентилены	1.5	-	-	4	0,016	0,001
0602	Бензол	0,3	0,	-	2	0,013	0,001
0616	Ксилол	0,2	-	-	3	0,0009	0,0001
0621	Метилбензол (Толуол)	0,6	-	-	3	0,009	0,001
0627	Этилбензол	0,02	-	\bullet	3	0,0003	0,00002
1302	Бензальдегид (Альдегид бензойный)			0,04	3	0,032	0,587
2754	Углеводороды С12-19	1	-	-	4	0,307004	0,75602
2902	Взвешенные вещества	0,5	0,15	-	3	6,101	0,4825
0301	Азота диоксид (IV)	0,085	0,04	-	2	0,091694	1,487
0330	Сера диоксид	-	-	-	3	0,352196	5,839
0333	Сероводород	0,5	0,05	-	2	0,000008	0,00003
0337	Углерод оксил	5	3		4	1,60614	27,001
0342	Фтористые газообразные соединения	0,008	-	-	2	0,001	0,00003
2908	Пыль неорганическая: 70$20 \%$ двуокиси кремния	5	3	-	3	32,1536	52,645
расчет объема пылевыделения при строительстве дороги:							
2908	Пыль неорганическая: 70$20 \%$ двуокиси кремння	5	3	-	3	4,848	790,19]
	BCETO:					46,2258	880,2225

Расчеты уровня пууа в период строительства и в период эксплуатации автодороги с учетом нарастания интенсивности движения транспортного потока произведен в программах «CREDO», «ЭРА» версия 1.7.

Водные ресурсы. Загрязнение поверхностных и грунтовых вод будет происходить в результате сбросов производственных и бытовых стоков, химических и механических загрязнителей с дороги.

Для снижения негативного воздействия на поверхностные и грунтовые воды предложено отводить ливневые воды с проезжей части за счет поперечных и продольных уклонов. Сброс воды с проезжей части осуществляется в прилегающие к дороге кюветы.

Почвы. Загрязнение почвенного покрова реконструкции автодороги происходит от земляных работ, строительства дорожного комплекса сооружений, объездных дорог.

Выполнен расчет концентрации соединений свинца в почве придорожной полосы при эксплуатации.
. В рабочем проекте предусмотрены мероприятия по снижению негативного воздействия на окружающую среду. Для снижения пылеобразования предусмотрено периодическое увлажнение водой объездных грунтовых дорог, ограничение скорости движения на участках дорог подверженных пылеобразованию, перевозка пылящих материалов в герметично упакованной таре, обработка дорожных покрытий обеспыливающими материалами. Устройство продольного уклона не выше 30%, радиусы кривых и видимость на дороге согласно технической категории дороги.

После окончания реконструкции предусмотрены технический и биологический этапы рекультивации нарушенных земель: уполаживание бортов грунтовых резервов, планировка поверхности нарушаемых земель, разборка основания стройплощадок и объездных дорог, надвижка предварительно снятого плодородного слоя.

Кроме того, на пескозаносимых участках предусматривается планировка притрассовой полосы и засев семенами песчаного саксаула.

Строительные и твердо бытовые отходы будут собираться в контейнеры, и вывозиться на полигоны ТБО (свалку по согласованию с СЭС).

Выполнено Заявление об экологических последствиях намечаемой деятельности по реконструкции участка 1240-1330 км. и 1330-1398 км. дороги «Граница РФ (на Самару) - Шымкент» с обязательствами заказчика по соблюдению природоохранных норм.

Особое условие: в соответствии с п. 1 ст. 69 Экологического кодекса РК получить разрешение на эмиссии в окружаюшую среду при производстве работ по реконструкции дороги.

вывод

Государственная экологическая экспертиза согласовывает рабочий проект «Реконструкция участка автомобильной дороги «Граница РФ (на Самару) Шымкент, через гг. Уральск, Актобе, Кызылорда» км 1240-1398».

Главный государственный экоэксперт Кызылординской области

К. Нурпеисова

[^3]

tuperimop

ПРИЛОЖЕНИЕ „o 1

к Заклоченню археологической зкспертнзы AR-12/19 от 23.09 .2008 г.

ТАБЛИЦА РАСПОЛОЖЕНИЯ ОБЪЕКТОВ

No	Название обтлекта кодовое обозначение	Географическне коордниаты (TM	Описание объекта
1	Кладбище Bur_1	N45 ${ }^{\circ} 40^{\prime} 55.0^{\prime \prime}$ E63 $3^{\circ} 1^{\prime} 08.1^{\prime \prime}$ Расположение: в 60 м южнее оси трассы Автодороги	Современное ктадоище размерами 180×20 м.
2	Знаковое место Bur_2	$\mathrm{N}^{\prime} 5^{\circ} 48^{\prime} 31.1^{\prime \prime} \mathrm{E} 62^{\circ}+11^{\prime} 32.7^{\prime \prime}$ Расположение: в 8 м севернее оси трассы Автодороги	Знаковое место. огорожено. место гиб́епи певицы Мадины Ератиевой
3	$\begin{array}{\|l} \hline \text { Mabзолей } \\ \text { Bur_3 } \\ \hline \end{array}$	 Расположение: в 8 м южнее оси трассы Автозороги	Мавзолей 17-19 вв. размер $10 \mathrm{~m} \times 10 \mathrm{~m}$. рялом несколько современных погребјений.
4	Мавзолей Bur_4	 Расположение: в 8 м южнее оси трассы Автодороги	Мавзолей 17-19 вв. размер 7 м $\times 5 \mathrm{~m}$. рядом несконько современных погребений.
5	К.задо́нще Bur_5	$\text { N45옹́ } 45.2^{\prime \prime} \text { E } 62^{\circ} 13^{\prime} 12.4^{\prime \prime}$ Расположение: в 17 м южнее оси трассы Автодороги	Современное ктадбище размер $70 \mathrm{~m} \times 20 \mathrm{~m}$.
6	Кладб́ище Bur_6	N45 ${ }^{\circ} 51^{\prime} 12.2^{\prime \prime}$ E $62^{\circ} 11^{\prime} 50.9^{\prime \prime}$ Расположение: в 12 м севернее оси трассы Автодороги	Современное кладоैище pazmep 100 m: 30 m
7	Кладо́ише Bur_7	${\mathrm{N} 45^{\circ} 51^{\prime} 17.5^{\prime \prime} \mathrm{E} 62^{\circ} 11^{\prime} 42.3^{\prime \prime}}^{\prime}$ Расположение: в 12 м южнее оси трассы Автодорогн	Современное кладо̄ище. Рядом с дорогой.
8	Кладбище Bur_8	N45 ${ }^{\circ} 52^{\prime} 30.8^{\prime \prime}$ E $62^{\circ} 08^{\prime} 50.3^{\prime \prime}$ Распо.ожение: в 140 метров южнее оси трассы Автодороги	Современное к.тадбише Рядоми с поворотом на пос Айтеке Би. находится множество современных кладбиш. разных размеров.
9	Кладбнще Bur_9	 В 15 метрах восточнее тинни маршрута.	Современное ктацоище. размер 130 mx 40 m.

КАЗАКСТАН РЕСПУБЛИКАСЫ KOPHALAH OPTAHGM KOPFAY министРлाTI
ЭКОЛОГИЛЛЛЫ РЕТTEУ ЖЭНЕ БаКЫЛАУ ККММТЕТТНIH АРАЛ-СЫРЛАРИЯ ЗКОЛОГИЯ

Кызылординский областной цепар'гямент
Комитета автомобильжых дорог
Министерства транспорта и коммуникяций РК
TOO «Инженерный иснтр «АСТАНА»

Заклочсние

государствениой зкологической экспертизвя
на рабочий проект «Реконструкция участка автомобильной дороги рсспубликанского значения "Рраница РФ (на Самару) - Мымхент через г. Уральск, Актобе, Кызнлорлам км 1702-1807»

Разработчик: Генеральный проектировиик ТОО «Инжеперньй ценр «АСТАНА»; раздел "Охрана окружаношеи средь» ИП Жумабеков А. (ГЛ ли01625Р от 28.12.2007г.).

Заказчик: Кызылординский обдастной департамент Комитета автомооильтых дорог Миннстерстна тринспорта и коммуникация PK.

Материалы постуьили на рассмотренис государстиенной экологичеспий экспертизы 01.12 .2008 г. вх. Nе4067 в составе: раздсл "Охрана окружаюощей среднл» к рабочему ироекту.

Срок строительства: 8 месяцев.

Обиие сведения

Автомобильнал цорога "Гранииы ГФ (на Самару) - 山Іыкент» проходит чсрез города Уральск, Акьобс, Кизылорда и является дорогои республиканского значения. Реконструкруемыіи участок лороги км 1702-1807 расположсн на перегоне КазалинскКьмылорда и проходит по территории Жалагамского и Сырдарьинского районов Кызььюрдинской обласки и г.Кызылорда.

Рабочим тросктом предусмитиваенся реконструкция участка автомобильной дороги © 1 . калегории под 11 категорик.

Havaло рскокструируемого участка соответсгяуст км. $1702+00$, конец усастха дороги ПТК $1807+00$ км. км., оппюе протяжение проектируемой трассь-106,2 км.

Этап строителвства вклкиает следуюиие виды работ:

- поиготонительние паботы- снятие плодороднию слоя почви с плоцидок, съездов, псресечсний, демонтаж сущеснуюциего обуслронстна, яроений объскюи малого сервиса; переустройство и внпос соммуиикаций, топаланоших в зону реконструкиии доротн;
- олыпка земляного полотна на вск ширину дороги с у'яетом примыканий и переходно-схоростних полос; па участках напранления пролольного ирофиля и плана, в высмках на участках переходов сгоронности уширения, устройства скотопрогонов и водонропускннх труб на вск ширипу;
- устройтво временных объездишх дорог для пропуска транзнтного двкжения ва участках ведения работ, на всей шмрине дороги по всему пусковому комплексу при замене н/б бетоннвтх труб;
- строительство искусственных сооружкений на реконструирусмом участке - в связи с нсудовлстнорительннм состоянием чвстсй сушествуюших круглых труб, необходимых длл обеспечения водоотвода.

В посгоянное пользованне отведены земли длл размещения конструкции земляного полотна и волоотводных сооружений автодороги. Плошадь дополнительного отвода пол доропу зсмель, постолнного пользовапил -326 га. Юлощадь земель временного отвода под объвздные дороги, стронтельные площадки и проезды, сосрсдоточенныте грунтовые резервы-765 га.

Строитсльнне матерналы (гравий, щебснь, песок будут доставляться авюотранспортом и хранится во временных складах).

ᄂдсло полос лвижения - 2, ширина проезжей части принята 15 m , ширина полос лиижепия $-3,75$ м, ширина зсмляного полотна $-15,0 \mathrm{~m}$.

Оценка воздействия на окружаюиупо среду
Привелены гсографияескам характеристика райопа промзводства работ, климат, дочвц!, уровеня стояния Іруитовых вод.

Климат Кызылордннской области резко континентальный, с марким сухим летом и хополпой зимой, снежный покров пеустойчивнй. Среднемеслчная темпсратура воздуха изменлетяя от $-6,2$ до $+26,4^{\circ} \mathrm{C}$.

ГОцогое количество осадков колеблстся в пределах 129 мм, п том числе в зимний псриол - 73 мм. Суточный максимум осаиков равеп $41 \mathrm{mм}$. Среднеголовая влажность доздуха - 58%, в летпие месяцы -37%.

Проетируемьй участок автодороги протекает вдољ р.Сырдарьи по равнинной местности пустынного и полупустцнного характера, изрсженной оросительной сесью каналов и ариков. Магистральный поливной канал пересскаег автодорогу четырежыы. Ширина канала $30-60 \mathrm{~m}$., высота обвалонки $1,5-3,6 \mathrm{~m}$. прн ширине $5-9 \mathrm{~m}$.

Земли больпей частьк осноены и занятн под орошаемое земледслие и пастбища.
В районе прохожлсния трассы расиространены следующие вицы почв: бурые $с$ Солонцами, пески в сочетании с бурымя, серобурые и тжыопвидныє, солончаковые пески. Содержанис гумуса колсблется ог 0,6 до 3%. Породообразукиииє грунты супссь, суглинок, глина, моцность почденно-плодородного слол 0,1-0,2 м.

Растительносс района проложения автодороги польнная, чсрный саксаул, куйреук, солодка, пирей, аджерег, из дрсвесных порол - лох, ивє, тополь, прсбенцис, эфемерамь.

Распространеніл грызуны: суслики, тупканчики, песчанки, полевыле мыни. Из предстанитслей насекомоядньх-ежи, зсмлеройки, много пресмыкаюиихся питомордник, гадкока, ящерицы.

Выолисно обследование почв участка работ, определени потребность в дорожностронтсльньх материалах, осушествлена привяза к внетрассовцмм карьерам.

Источники внбросов загрязниюцих веществ являногся неорганизованнми и нременными в период дорожно-строительных работ:

- земллныс работы,
- временные склады строительных матерналов,
- ав готранспорт и спецтехника с лизельными ДВС,
- подннжные механизмья, иснользусмые при ногру:зочпо-разгрузочных рабогак.

Водоснабжжение. B периол проведенил дорожно-строительыых работ длл пнисподавления при устройсье земляного полоэна и дорюжной одежды прсдусмотрена привозная воца. Объсм забора воды па пнлеподавление в перкод дорожно-七гроительных

работ составит $165000 \mathrm{~m}^{2}$. Вода для строителылых бригад доставляется автоводовозами и хранится в специальных емкостях.

Водоотведение. Для сбора хоз-бытовых сточных вод от участков расположения строительных бригад планируется устройство биотуалетов. Стоки будут вывозится ассимкляциониєім мщиинамі с последуошим сливом в места согласованныє СЭС. Сочных вод, непосредственно сбрасыпаемьтх на рельеф местюости, в иоверхностные волиье объекты, трсдприятие не имеет.

Атмосферный воздух Вшнолнена одепка яоздействия на атмосферный воздух вьбросов загрязняощих вепеств от реконструкции автодороги, Привсден перечень загрязняюших вешеств от источииков вылеления.

Персчень загрязнлющих вещесто, выбрасьваемьвх в атмосферу

Kのд 3 3arp. всие ства	Наимсноваиие Всщества	ПДк максим. разован, $\mathrm{mr} / \mathrm{m}^{3}$	ПДК среднесугочная, $\mathrm{mr} / \mathrm{M}^{3}$	Класе onacности	Выброс всщества H	Выброс вешества 1/год
,	2	3	- 4	6	7	8
2907	Пылл псорганияеская, солержапая двуохись кремния внтие 70% (Динас н $\mu \mathrm{p}$. .	0,15	0.05	3 	6,3606	26,2548
2908	Пыли неорганическал: 70 . 20% двуокиси кремнкя	0,3	0,1	3	53,06753	607,578
	Итого:				59,41813	633,8328

Произведсны расчсты рассеивания 38 в атмосфере (программ «ЭРА» версия 1.7). Нормтгивы эмнссий а окружаюошуто ереду предлагастся устанонкть в объеме, опрелеленном расчетным путем на основанни нормативно-методических документов, утвержденных МООС РK.

Виноиьй выюрос врелиьхх неществ от неорианизованных исгочииков загрлзнения атмосферы рассчитан па период строительства (реконструкции) дороги (2009г.).

Расчетн уровня пгума в псриод строитеньства и в период эксплуатагии аводороги с учстом нарастания интенсивности двнжения чранспорьного потока произведен а программах «CREDO», «ЭРА» версил 1.7.

Водные ресурсы. Зшрязнение поверхностных и грунтовьх вод будет происходитъ в результате сбросов химических и механических загржзнителей с дорогд.

Почвы. При реконструкдии автолороги в ходе земляных рабог возможно загןязсние почвенного покрова строитсльным мусором и бытовыми отходамм.

Выполнен расчст концснтраиии соединений свинца в почве придоромной полосы при эксплуатации.

В рабочсм проекте предусмоярепы мероприятия по снижению исгжпиного воздействия па окружакшую среду.

Длл умсньшенил всзлействия на воздушную среду предусмотрено:

- иримененис землсройно-транспортной и сррительной техники с двигателями внутрсннео сгорания, отвенаншими требованиями ГОСТ, с контролем выбросов загря:зняюи!их вепиеств;
- осупествлсние строитсльных работ с применепием орошения (пылеподавленил) дорожного нолотна и сроительных материалов;
- изноовление сборных строигельных конструкций, товарноно бетона и раствора на произволственной базе подрядной ортаиизиии с последукзшей доставкой на строктольнуто плшыадку спедавтотранспортом;
- заправка ГСМ автотранспорта па специализированных АЗС ближайших населенных пунктов;
- заправка техники ограниченного псредвижения иредусматривается на спедиянной врсменной площидке с твердым покрьгием автоздиравщиком с помоцью шлангов с геметичными муфтами, имеющих загворы у выпускного отверстил;
- сокраиение или прекрацение работ при неблагоприятных метеоусловиях.

Для снижения негативного воздействия на поверхностные и грунговне водя иредложено отводить ливневые воды с проезжей части 32 счет поперечных и продольных уклонов. Сброс воды с проезжей части осуществляется в прилегающие к дороге кювсты.

Предусмотрсна рекультивация земель: техническое снятис почвенно-растительноло слоя ночвы со склацированием его в отвалы ($п$ составе подитовительных работ), срезка кустарника, корчевка пией с погрузкой в автосамосвалы, валка деревьев с погрузкой и праиспорсировкой, обратная надвижга растнгельного грунта из отванов с последующим вкіриннияанием грунта, планнровка рыхыение рекультивируемых плопадей.

Строительные и тверло бытовые отходы, обрязовавыиеся в процессе дорожностронтельньх работ, будут собираться п контейнеры, и вывозитьсл на полигоны ТБО по догонору.

Выилнеко заявление об экологичсских последствиях экологических деятельности по реконструкции участка $1702-1807 \mathrm{kM}$ антомобилєной дорогн с обязатељствами закаинка по соблюденик природоохраннытх норм.

Особое условие: в соответствии с п.I ст. 69 Эколпгического кодекса РК получить разренсние на эмиссии в окружиюгуую срсду при ироизводстве работ по реконсирукции дороги.

В ВОД
Государственная эколовическая щксертиза согласовцвает рабочий проект "Реконструхтия участка автомобининой дорог" республиканского зниченил "ранипа РФ (на Самару) . Шымкент чсрез г.Уральск, Актобе, Кхзыилордш» км 17()2-1807».

Главный государственный экозксперт Кызылординской области

К. Нурпенсова

[^4]

ТОО «Археологические изыскания»

Лицензия Министерства культуры и информации РК №0132440 от 24.10.2008 г.

Заказчик: ТОО «Шымкент Каздорпроект»

ОТЧЕТ

археологического исследования по выявлению объектов историко-культурного наследия по реконструкции автомобильной дороги республиканского значения «Границы РФ (на Самару) Шымкент», участок с км 2057-2135

Шымкент 2008

Оглавление

1. Краткая историческая справка обследуемого района.
2. Визуально-натурное обследование зоны строительства дороги по проекту «Реконструкция автомобильной дороги республиканского значения «Границы РФ (на Самару) - Шымкент», участок с км 2057-2135.
2.1. Заключение.
3. ТАБЛИЦА 1. Характеристика выявленных памятников историкокультурного наследия в зоне реконструируемой дороги «Границы РФ (на Самару) - ІШымкент» с километра 2057-2135.
4. Выводы и рекомендации.
5. Рисунки.
6. Фотографии.
7. Требование к сметной документации
8. Сметный расчет.

1. Краткая историческая справка обследуемого района

На юге современной Республики Казахстан, в долине среднего течения Сырдарьи, между широкой и поросшей лесом поймой великой реки и идущим параллельно ей хребтом Каратау находится цепочка таких древних оазисов, таких, как Испиджабский, Отрарский и Туркестанский оазисы. Через эту группу оазисов в древности проходила важнейшая трасса караванной торговли, и сегодня здесь проходят международные линии железной дороги и автомагистрали.

Район планируемого строительства автомобильной дороги расположен на территории Туркестанского оазиса округа Шавагар. Здесь вдоль основных водных магистралей Сыр-Дарьи, Арыси, Келеса, Бугуни, Чаяна, Бадама и др. сохранились многочисленные развалины древних городов, укрепленных поселений и замков, ирригационных сооружений, караван-сараев, остатки сельских поселений, курганные могилыники.

Одним из наиболее известных городов на Средней Сырдарье, который сыграл важную роль в истории Казахстана, является городище Сауран. Остатки его находятся в 40 км северо-восточнее г. Туркестана под тем же названием. Городище Сауран, как и расположенное неподалеку городище Каратобе, - это остатки одного из наиболее известных средневековых городов Казахстана. Живописные развалины крепостных стен Саурана хорошо просматриваются с проходящих севернее автомобильной и железной дорог. Велика роль Саурана в истории Казахстана как важного узла на трассе Шелкового пути, на стыке степи и зоны средневековых городских культур Центральной Азии.

Ценные сведения о городе содержатся в мемуарах поэта и писателя Васифи. Он описывает необычайное для Казахстана водоснабжение города при помощи кяризов - подземных галерей, через которые выводятся наружу подземные воды.

С историей города Туркестана тесно переплелась судьба средневековых городов Южного Казахстана - Шавагара и Ясы, бывших в определенные исторические периоды административными и экономическим центрами Туркестанского оазиса. Шавагар был главным городом области в период VI-XI вв. Ему подчинялись другие мелкие города и поселения, в число которых входил и Ясы - будущий центр округа.

Шавагар находился на торговом пути, соединявшем сырдарьинские города с земледельческими оазисами Средней Азии и Хорезмом. Он начинался как ответвление Шелкового пути (большая дорога) в Испиджабе и шел на северозапад в Арсубаникет, оттуда в Кедер (Отрарский оазис), затем в Шавгар, Сауран и Сыганак и далее путь шел в города Дженд, Янгикент, а вдоль русла КуванДарьи в Хорезм. ${ }^{2}$

[^5]2. Визуально-натурное обследование зоны строительства дороги по проекту «Реконструкция автомобильной дороги республиканского значения «Границы РФ (на Самару) - Шымкент», участок с км 2057-2135

Участок обследованной дороги представляет собой автомобильную трассу, построенную в нынешнем ее состоянии в послевоенные годы. Последний капитальный ремонт дороги был осуществлен в начале XXI века. Сама же трасса в дореволюционное время выполняла роль крупного почтового трата Российской империи. Эта дорога была снабжена в прошлом мостами и почтовыми станциями. В более раннее время по этой дороге проходил караванный путь из Испиджаба-Сайрама в Нуджикет-Шымкент, в Шавагар, Сауран и др.

В ходе натурного обследования в районе реконструируемой дороги было выявлено общим количеством три памятника археологии. Среди них следует отметить памятники археологии Сауранского оазиса (группа средневековых усадеб, кяризные системы Саурана и Каратобе, ирригационные сооружения), городище Ташанак, одиночный курган Шорнак-1.

Большую роль в экономике средневековых городов играли пригородные территории, или его сельскохозяйственная округа. Такая зона четко выделяется в топографии Саурана. Особо развита она к северу от стен собственного городища, так как со стороны гор Каратау, к городу по наземным руслам мелких речушек и по подземным кяризам поступала вода. Застройка пригорода имела усадебный характер (рис. 5, фото 1-4).

Пригородные усадьбы Саурана имели особую планировку, состоявшую из холма, под которым скрываются руины жилого дома. Рядом угадываются развалины хозяйственных построек. Усадьбы расположены как бы цепочками, ориентированными с запада на восток или с северо-востока на юго-запад. Сеть арыков, проходя между стенами усадеб, объединяет их в отдельные ирригационные микрорайоны. От этой арычной сети отведены мелкие арыки, по которым вода подавалась на поля и в сады внутри усадеб.

Туркестанский оазис богат памятниками археологии. Среди них следует подчеркнуть такие городища, как Торткуль I-II, городище Ишкент, Икан и десятки больших и малых поселений и городов. Одним из таких небольших городищ является городище Ташанак, датируемое XIII-XIV - XVIII вв. (фото 5-9).

Одиночный курган, выявленный вблизи с. Шорнак, по своей типологии, структуре, расположению и топографии соответствуют памятникам отрарскокаратауской культуры первого этапа. Подземная часть этих памятников имеет подкурганные склепы с катакомбами различной формы и дромосами. Глубина захоронения от поверхности кургана достигает $10 \mathrm{~m}^{1}$ (рис. 6, фото 10).

Таким образом, обследованный нами участок дороги на отрезке с километра 2057-2135 показал, что он представляет в археологическом отношении боль-

[^6]шую научную ценность. Памятники археологии, расположенные на этом отрезке, возникли и развивались на стыке великих степей и в зоне древних среднеазиатских оазисов, на нитях караванных дорог Великого Шелкового пути.
2.1. Заключение: Необходимо провести перед строительством дороги мероприятия по сохранению памятников историко-культурного наследия путем археологического исследования всех выявленных объектов. Включить локаль-но-сметный расчет в общую проектно-сметную документацию в строительство этого участка дороги.

ТАБЛИЦА 1

2. Характеристика выявленных памятников историко-культурного наследия в зоне реконструируемой дороги «Границы РФ (на Самару) ІІымкент» с километра 2057-2135

\sim -	4	Городище Ташанак (Абдулмалик) Фото 5, 6, 7, 8, 9	Городище Ташанак находится у села Ынтымак, слева от реконструируемой дороги. В плане городище представляет из себя прямоугольную возвышенную площадку, ориентированную сторонами примерно по сторонам света. Имеет размеры: основание с севера на юг - 40 м и с запада на восток - 60 м, высота культурных напластовании около 2 м. К трем ег сторонам (за исключением восточной) примыкает еще одна площадка подпрямоугольной формы высотой 1 m . Размеры сторон с севера на юг около 200 м и с запада на восток -180 м. ${ }^{1}$ На данный момент на памятнике устроено современное мусульманское кладбище и мечеть Абдулмалика. Культурные слои городища сильно потревожены. В виду того, что строительные работы реконструируемой дороги будут производиться по охранной зоне памятника, в период строительства следует руководствоваться пунктом 2 статьи 39 Закона об охране и использовании объектов историко-культурного наследия РК: «В случае обнаружения объектов, имеющих историческую, научную, художественную и иную культурную ценность, физические и юридические лица обязаны приостановить дальнейшее ведение работ и сообщить об этом уполномоченному органу".	Среди подъемного материала, полученного на городище Ташанак, встречаются фрагменты поливной керамики с голубой и темно-зеленой глазурью (фото 21, 22), фрагменты массивных ручек от кувшинов (фото 23), фрагменты боковин, на которых имеются потеки красного и темнокоричневого ангоба (фото 24,25). Один фрагмент донца покрыт бесцветной глазурью с темно-серым орнаментом (фото 27). Подъемный материал из городища датируется XVXVII вв.	$\begin{aligned} & 42 \mathrm{~T} 449861 \\ & 4789530 \end{aligned}$ Рис. 1, 3
- - -	5	Одиночный курган ІІІорнак-1 Фото 10	Курган расположен примерно в 2 км северо-западнее от села Шорнак, в 25 м от современной автотрассы. Диаметр у основания 18 м, высота $-0,5$ м. Курган сильно раздутый, с севера имеется понижение. Требуется комплексное археологическое исследование до начала строительных работ.	Подъемный материал не обнаружен.	42 T 419681 4808179 Километражный столб 2079 Рис. 1, 4

[^7]
3. Выводы и рекомендации

Визуально-натурное обследование участка с километров 2057-2135 выявило общим количеством три памятника. Все они непосредственно расположены в зоне реконструируемой дороги. Учитывая, что эти памятники в перспективе будут разрушены и утрачены для науки, они подлежат полному археологическому вскрытию и изучению до строительных работ. Наиболее уникальные объекты могут быть изъяты и музеефицированы. Все материалы раскопок должны быть переданы в государственные музеи, где займут достойное место в культурном наследии Казахстана. Они позволят восстановить давно забытые страницы многовековой истории казахского народа. На основе этих материалов будут опубликованы научные труды, которые обогатят историю обширного Цен-трально-азиатского региона и войдут в учебные пособия по истории и культуре Казахстана.

Рекомендации:

1. Изучить городище Ташанак, группу усадеб Саурана, кяризные и ирригационные системы Саурана и Каратобе и одиночный курган Шорнак-1, попадающие непосредственно в зону реконструируемой дороги.
2. Произвести камеральную обработку всех материалов, включая реставрацию и лабораторные исследования находок археологических объектов.
3. Произвести типологический и хронологический анализ коллекции материалов, полученных в ходе раскопок.
4. Теоретический анализ материалов экспедиции опубликовать в виде трудов статей и монографий.

Ввиду того, что внешние признаки многих памятников, в особенности курганных захоронений, утрачены, в период строительства дороги необходимо руководствоваться пунктом 2 статьи 39 Закона об охране и использовании объектов историко-культурного наследия РК: «В случае обнаружения объектов, имеющих историческую, научную, художественную и иную культурную ценность, физические и юридические лица обязаны приостановить дальнейшее ведение работ и сообщить об этом уполномоченному органу».

График работ:

Археологические исследования памятников, попадающих в зону реконструируемой дороги, необходимо проводить заранее до строительных работ. Для исследования группы усадеб и кяризных, ирригационных систем Саурана и Каратобе требуется два полевых сезона.

Рисунок 3

I иәпиилgе \perp Ј и I шожнкоия

Рисунок 5

Рисунок 6. Типология подкурганных захоронении долины реки Арысь
(аналогии)

©omo 2

Фomo 3

Фomo 4

Фomo 10

Подъемный материал из групn усадеб Саурана

Подъемный материал из групп усадеб Саурана

Подъемный материал городища Ташанак (Абдулмалик)

Подъемный материал городища Ташанак (Абдулмалик)

Требование к сметной документации на археологические работы по проекту «Реконструкция автомобильной дороги республиканского значения «Границы РФ (на Самару) - Шымкент», участок с км 2057-2135

1. Группа средневековых усадеб Саурана

1.Предварительные работы
2.Историко-архивные изыскания
3.Изучение литературы и графических "источников.
4. Графическое оформление полевых работ
5.Полевые и камеральные работы при постоянном наблюдении археолога.
6.Оформление фотоальбомов и иллюстрации
7.Составление научно-реставрационного отчета.

Площадь раскопа - 20000 кв. м., глубина - 0,5
Общий объем работ - 10000 кубов.
Категория 2

2. Одиночный курган-1

1.Предварительные работы
2.Историко-архивные изыскания
3.Изучение литературы и графических источников.
4. Графическое оформление полевых работ
5.Полевые и камеральные работы при постоянном наблюдении археолога..
6.Оформление фотоальбомов и иллюстрации
7.Составление научно-реставрационного отчета.

1 курган 10×10, глубиной-5м.-500куб.х 500кубов
Общий объем работ - 500кубов
Категория 2

Согласовано:

Начальник отдела сохранения
 управления культрр Южно-Казахстанской области

Директор:
А.Н. Грищенко
Б.А. Байтанаев

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Археологические работы по проекту реконструкция участка с километра 2057-2135 автомобильной дороги Границы РФ(на Самару)- Lif нмкен

Сметная документация составлена в соответствии со сборником цен на научнопроектные раб̈оты по памятникам истории и культуры (СЦНПР-91) раздел 6,7 и общая часть. Год издания сборников 1991.

Базисная сметная стоимость археологических исследований определена в ценах 2001 года согласно коэффициента пересчета к=72(Письмо N20 Комитета по делам строительства от 01.02 .2001 г).

При составлении сметной документации приняты:

- Территориальный район 15 зона 2
- Временные здания и сооружения согласно СН РК 8.02-09-2002 - 0.5\%
- Затраты на произвордство работ в зимнее время - $0,7 \%$
- Выслуга лет - 1\%
-Дополнительные отпуска рабочим - 0,4\%
- Коэффициент пересчета в цены 2008 г-1,507
- Ненормируемые и непредвиденные затраты согласно СН РК 8.02-02-2002-6\%
- Налоги сборы и обязательные платежи согласно СН РК 8.02-02-2002-2\%
- МРП-1168

Общая сметная стоимость строительства в текущем уровне цен - 277529.53 тыс тенге

Заказчик

утвержпен

Сметннй расчет стоимости строительства в сумме

н том sucue:
налог на добавленную стоимость
-

©OPMA 1

(ССвлка на документ об утверидении)
. . .
$200 \quad$ r.
CMETHM
ЕАСЧЕТ СТОИМОСТИСТРОИТЕオВГТВА

Археологические работы по проекту реконструкция участка о километра 2057-2135 автомоблльной дороги Границы $P \phi$ (на Самару)-і位мкент

Составлен в ценах на 1.01.2001г

Глава 3. Объекты подсобнопо и обсляжияаюмепо назначения
nToro

Глава б. Наружные сети и сооружения водоснабжения, канализаиии, теплоснабжения и газоснабжения
итого
Глава \quad Елагоусяройство и озеленение территории
ATOIO

Протраммный комплекс $\mathrm{ABC}-4$ (редакция 3.15) 2 - 1000
-
Всего по плаве
итого по ГлАВАМ $1-7$

Глава 8. Временные здания и сооружения

сооружений 15% олов от временных зданий и
Всего по главе

Глава 9. Дополнительные затраты на строительство
4. СН РК 8.02-07-2002 - дополнительные затраты при производстве работ 1237,77 - 1237,77
5. CH PK 8.02-02-2002
-Затраты на выслугу лет, 1%

-	-	1768,24	1707,3

1768,24
707,3
7.

- B том

$$
\begin{aligned}
& \text { ИТОГО ПО ГЛАВАМ 1-9 } \\
& \text { числе возвратные суммы-15\% }
\end{aligned}
$$

062,15
131,96

$$
\begin{aligned}
& \text { ИTOFO ПО СМЕТНОМУ } \\
& \text { PACYETY В БАЗОВНХ ДЕНАХ }
\end{aligned}
$$

\qquad 707.3

180

$$
178062.15
$$

8. CH PK 8.02-02-2002
-ИTOГО ПО СМЕТНОМУ РАСЧЕТУ В ТЕКУНИХ LЕНАХ
268356,9
\qquad
9. CH PK 8.02-02-2002
-Налоги, сборы, обязательные платежи, 2 я
268356,9左

СМЕТНАЯ СТОИМОСТЬ

ПETPOBA
СОСТАВИЛA

пиРектор

Грограммный комллекс $\mathrm{ABC-4}$ (редакиия 3.15;
НАИМЕНОВАНИЕ СТРОЙки- Археологические работы на реконструкцик участка с километра
НАИМЕНОВАНИЕ СТ ОЙКИ
НАИМЕНОВАНиЕ ОВьЕктА- Археологические работы по проекту реконструкция
дороги Г'раницы $Р \Phi$ (на Самару)- ॥ымхент
ЛОКА Ль H A я © МЕ T A

dGWOH यअG990
Сметная стоимость
175944, 66 тыс.тенге

Затраты труда,
чел. -ч
рабочих-строителей
рабочих, обслужи-
вающих машины на :-~- всего
) ! единиду
11.....

160012, город Шымкент, пр. Республики, 6 тел/факс: 8(3252) 31-07-21

Южно-Казахстанский областной Департамент Комитета автодорог МТиК РК

TOO «IIlымкент Каздорпроект» гл.инженер Лим И.Г.

> ЗАКЛючЕНИЕ No $00001 \overline{3}$ государственной экологической экспертизы на рабочий проект «Реконструкция участка км 2057-2135 автомобильной дороги «Јр. ${ }^{\text {T }}$ (на Самару) - Шымкент»

Материалы разработаны ТОО «Шымкент Каздорпроект» (ГСЛ № 006467 от 20.08 .2001 г.) на основании задания на проектирование, утвержденного заказчиком. Раздел «Охрана окружающей среды» разработан Фоминой Г.М. (ГСЛ № 01178Р от 12.07.2007 г.).

Заказчиком проекта является Южно-Казахстанский областной Департамент Комитета автодорог МТиК РК

Департамент пассажирского транспорта и автомобильных дорог ЮКО.
На рассмотрение представлены: Пояснительная записка рабочего проекта, раздел «Охрана окружающей среды", заключение ДГСЭН ЮКО № 17-6-874 от 29.12.2008 г.

Материалы поступили на рассмотрение 26.12.2008 г., № 964.

Общие сведения

Участок строительства относится к IV Г климатической зоне. Температура воздуха абс.максимальная $+49^{\circ} \mathrm{C}$, абс.минимальная $-38^{\circ} \mathrm{C}$, средняя годовая температура воздуха $12,1^{\circ} \mathrm{C}$. B геологическом строении полосы прохождения трассы принимают участие аллювиально-пролювиальные отложения, представленные супесью, суглинком и песком, которые подстилаются гравием и галечниковым грунтом. Подземные воды в пределах полосы трассы залегают на глубине 6-8 м от поверхности земли.

Участок автодороги, подлежащий реконструкции, проходит по территории г.Туркестан ЮКО. За начало участка реконструкции автодороги "Самара - Шымкент» принят существующий км столб $2135+00$ (в районе с.Ст.Икан), конец - существующий км столб 2057+00 (граница ЮжноКазахстанской и Кызылординской областей). Автодорога «Самара - Шымкент» относится к III техни-

ческой категории. Ширина проезжей части 6,6-7.5 м, ширина земляного полотна - от 12 до 14 м.. Протяженность участка составляет 57,6 км.

Существующая дорожная одежда состоит из покрытия толщиной от 4 до 14 см и основания из гравийно-песчаной смеси толщиной от 22 до 49 cm . Толщина дорожной одежды неравномерная в поперечном и продольном разрезах. Покрытие представлено асфальтобетоном с содержанием битума $6,3-9,0 \%$ от массы. На большей части покрытие подвержено деформациям: трещиноватость, волны, кромочность, выбоины, сдвиг. Трасса проходит в районе орошаемого земледелия, поэтому реконструируемый участок пересекают множество ирригационных сооружений. Все водотоки за исктючением р.Кошкарата на км $2096+100$ являются временными.

В соответствии с заданием на проектирование автодорога «Гр РФ (на Самару) - Шымкент» км 2057-2135 является автодорогой Б технической категории. Основные технические параметры, принятые при проектировании: ширина земляного полотна - 27,5 м, ширина проезжей части $-2 \times 7,5 \mathrm{~m}$, число полос движения - 4 , ширина обочин $-3,75$ м. Общее направление трассы юго-восточное. Реконструкция выполнена по ранее проложенной оси трассы. Трасса запроектирована одной осью по середине разделительной полосы, представляет собой уширяемую часть до параметров Іб технической категории с небольшими изменениями радиусов кривых в плане. Общее протяжение реконструируемого участка 81,5 км. Трасса автодороги проходит по богарным, пастбищным и орошаемым землям, пересекая при этом естественные водотоки, оросительнье и сбросные каналы существующих оросительных систем. Вдоль трассы, проходящей по поливным землям, проектом предусмотрена нарезка кюветов для приема и сброса поливных вод.

В подготовительный период предусматриваются следующие виды работ: снятие почвенноплодородного слоя со складированием в бурты, переустройство подземных и воздушных коммуникаций, фрезерование существующей дорожной одежды с вывозом на временную объездную дорогу; разборка существующих автопавильонов, демонтаж существующих дорожных знаков и ж/б труб, подлежащих разборке; устройство временной объездной дороги, устройство стройплощадок для временного хранения материалов, рекультивация грунтовых резервов.

Для пропуска транзитного транспорта в целях обеспечения безопасности движения предусмотрено устройство временной объездной дороги. Временная объездная дорога устраивается шириной 10 m с покрытием серповидного профиля из фрезерного материала покрытия основной дороги. По окончании строительства объездная дорога разбирается с ПКОв +00 до ПК $259_{\mathrm{B}}+63$ с вывозом в нижний слой основания последующего участка. Остальная часть объездной дороги используется как местный проезд. Кроме этого, на период строительсвта транспортных развязок в разных уровнях предусматриваются объездные дороги. В дальнейшем объездная дорога на транспортных развязках в г.Туркестан, которая отмыкает на ПК431+70, используется как проезд по улице, в в с. Шорнак - в районе самой развязки длиной 800 м разбирается. Для безопасного движения по объезным дорогам устанавливаются дорожные знаки с последующим демонтажем.

Продольный профиль запроектирован в соответствии с требованиями СНиП РК 3.03-09-2006 с учетом максимального использования существующего земляного полотна. Земляное полотно принято шириной $27,5 \mathrm{~m}$. Уширение земляного полотна осуществляется в левую сторону до проектируемых параметров с небольшими изменениями радиусов кривых в плане. На участках лороги с небольними насыпями до 1,5 м для отвода воды устраиваются кюветы. Во избежание размыва поверхностными водами откосы укреплены засевом трав по растительному слою.

Проектом принят следующий тип конструкции дорожной одежды:

- верхний слой покрытия и ЩМА-20 (щебеночно-мастичный асфальтобетон) - 5 см;
- нижний слой покрытия из пористой крупнозернистой асфальтобетонной смеси - 10 cm ;
- верхний слой основания из черного щебня - 12 см;
- средний слой основания из щебеночно-гравийно-песчаной смести $\mathrm{C}_{4}-20$ см;
- нижний слой основания из гравийно-песчаной смеси $\mathrm{C}_{4}-26$ см.

Для организованного выезда с прилегающей территории населенных пунктов Майдантал и Сауран предусмотены примыкания по типу 1-А-2 с устройством переходно-скоростных полос ТП 503 -$0-51.89$. Съезды в поле предусмотрены по ТП 1-Б-2 ТП 503-0-51.89. В населенных пуктах (с.Шорнак и г.Туркестан) съезды в улицы осуществляются с местных проездов. На вновь устраиваемых местных проездах и съездах покрытие устраивается из горячей плотной мелкозернистой асфальтобетонной смеси толщиной 6 см на основании из гравийно-песчаной смеси толщиной 30 cm . Транспортные развязки в разных уровнях и путепроводы устраиваются на пересечении с автодорогой КХ-58 «Туркестан-Балтаколь-Нуртасаул-Шорнак-Карнак-Кентау», в начале и на конце обхода г.Туркестан и обхода с.Икан.

Обочины автодороги укрепляются оптимальной гравийно-песчаной смесью толщиной 27 см. Из существующих 77 малых искуственных сооружений из железобетона для пропуска поливных и

сбросных вод замене подлежат 59 , остальные 17 исключены как недействующие. Новые водопропускные железобетонные трубы приняты по серии 3.501.1-144. Существующие железобетонные плитные мости от Арыс-Туркестанского канала находятся в хорошем состоянии. Также проектом предусмотрены автобусные остановки, площадки для стоянки автомобилей, установка дорожных знаков, нанесение разметки.

Организация строительства предусматривает выполнение строительных, монтажных и специальных работ поточным методом с соблюдением технологической последовательности, строгое соблюдение правил техники безопасности и требований по охране окружающей среды.

Оценка воздействия намечаемой деятености на окружающую среду (OBOC)
Проектом предусмотрены следующие мероприятия по охране окружающей среды: постоянный контроль за техническим состоянием и режимом работы строительной автотехники; обеспечение качества дорожного покрытия, организация дорожного движения; снятие и хранение почвенноплодородного слоя с последующим использованием его при рекультивации на временно занимаемых землях.

При поведении строительных работ в атмосферный воздух будет выделяться пыль неорганическая ($70-20 \%$ двуокиси кремния) и углеводороды. Согласно выполненного расчета выбросы составят: пыль неорганическая - $0,2,688$ г/с, 4,627 т/год, углеводороды (алканы $\mathrm{C}_{12} \mathrm{C}_{19}$) - 0,1 г/с, 0,164736 т/год. Данные выбросы носят временный и неорганизованный характер. При эксплуатации автомобильной дороги стационарные источники выделения загрязняющих веществ в атмосферу отсутствуют.

Согласно СНиП РК 3.03-09.2003 для предохранения конструкции земляного полотна от переувлажнения поверхностными водами и размыва предусмотрен водоотвод с поверхности проезжей части за счет поперечного уклона. Водоотвод осуществляетея кюветами в пониженные места придорожной полосы. По завершении строительства земли, занимаемые строительными площадками, объездными дорогами и складами-накопителями, подлежит рекультивации. Рекультивация выполняется в два этапа: техническая и биологическая рекультивация. Участок автодороги после окончания ремонтных работ очишается от строительного и бытового мусора. Весь строительный и бытовой мусор вывозится на полигон ТБО.

Выводы

Рабочий проект «Реконструкция участка км 2057-2135 автомобильной дороги «Гр.РФ (на Самару) - Шымкент» СОГЛАСОВЫВАЕТСЯ.

Начальник ОГЭЭ

Б. Сатенов

[^8]
ОНТҮСТІК КАЗАКСТАН ОБлыСыННЫ
 ТАБИҒИ РЕСУРСТАР ЖӘНЕ
 ТАБИҒАТ ПАЙДАЛАНУДЫ PETTEY

БАСКАРМАС Ы

УПРАВЛЕНИЕ ПРИРОДНЫХ РЕСУРСОВ И РЕГУЛИРОВАНИЯ ПРИРОДОПООЛЬОВВАНИЯ ІЖЖНОКАЗАХСТАНСКОЙ

ОБЛАСТИ
160012. Шымкент қаласы, Республика данғылы, 6

тел/факс: 8(7252) 31-07-21
e-mal depshm@rumbler ru
60012 город Шымкент, пр. Респуб̈ики. 6 теп: 8 (7252) 31-07-21

Южно-Казахстанский областиой
Департамеит Комитета автодорог МТиК РК

Закліочение No 000147
государствений экоиопинескиі экспертизы на рабочий проскт «Строительетво а/д «Обход г. Шымкент» скм 2231 а/д M-32 «Гр.РФ (на Самару) - 山имкент» с выходом па 674 км а/д А-2 «Хоргос-Аиматы- Шlимкенг-гр.Р.Узбскнстап»

Материаль разработаны АО «АК «Қазакстан жолдары» (03-ГСЛ No 002095 от 30.11 .2000 г.) на основании задаиия на просктированис, утвержценного заказчиком. Раздел «Oхрана окружаюпей среды» разработан ТОО КАЗНННПН «Дортранс» (ГСЛ No 01122P от 10.10.2007 г.).

Заказчнком ироекта явтястся Южн-Казахстанекиіі областной Департамент Комитета автодорог МТиК РК.
 разден «Охрана окружаюоцей средь»". обтянненис в назете "Казахетанская правда» о 02.12 .2008 r .

Участок строитеньтва отноится к \mid ' [' ктнматичесой зоне. Температура воздуха абс.максимальная $+49^{\circ} \mathrm{C}$, абс.минимальная $-38^{\circ} \mathrm{C}$, срсдняя годовая температура воздуха $12.1^{\circ} \mathrm{C}$. В геологическом строении полосы прохождеиия трассы принимают участие лессовиднье суглинки. В зависимости от харакгера грунтового увлажнения на лессовидных отпожениях сформированы серохемы обыкноненные и :угово-сероземнье почвы. Подземные нонь в пределах полоси трассь залегают на гячинс оонес 2.0 м от поверхности землн.

Трасса проектируемой объсздной автоцорони «Обход г. Нымкент» с км 2231 а/д М-32

гр.Р.Узбекистап» пролсгает по герритории с/о МІбар Ордабасинского района и с/о Кайнарбулак Сайрамского района ЮКО. Оӧцая иротямениость автодороги составляет 36,5 км, ппощадь - 255,5 га при проектируемой иириие автю;юроии 70 m .

В соответствии с задаиием на ироктирование пректируемая автодорога является автодорогой $б$ техиической категорин. Основние техинчскис иарамстры, иринятые ири проектировании: ширина земляного полотна - 27.5 м. число полос движения - 4, ширина разделительной полосы - 5 m , мосты- 3 шг.. транснортиыс развязки - 4 urт., ии дорожной одежды и вид локрытия - кагитальный, ц/бетон.

Рабочим проектом предусмотрены следушиие работы; устройство земляного иолотна, устройство дорожной одежлы, строительство транспортных развззок в разных уровнях, установка дорожных знаков и ограждениіі, нанессние дорожных разметок, устройство пересечений и примыканий, строительство мостов. устройство водоотвода с проезжей части моста. устройство струенаправляюших дамб у искусственных сооружений.

На период строительства автодороги иредусматрииается отвод земель под объездную дорогу на искусственных сооружениях. сосредоточсниье резерзы грунта, строительные пиощадки у труб и мостов, склады дорожно-сронтельных материалов, площадки для размешения вахтового поселка и передвижного ЦБЗ.

Система порожного водоотвода. разработаная даиным проектом, состоит из ряда соорукений и отдельных конструктивных мероириятий, предназначенных для предотвращения персувлажнеиия земляного иолотна. Для отвода поверхностной воды предусмотрено устройство ооковых водотводных каиав (кюветов). труб для иропуска водотоков и воды под земляным полотном. Водоиронуккые сооружения устраиваются в местах пересенения автодороги с водотоками. сухоцдами. поливными и сбросными каналами. Вода с проезжей части мостов ностиает к бордиорам тротуарных блоков и далее отовдится к водоотводным лоткам у пачана и кониа моста, затем постураев в водоприемные колодцы, где происходит фильтрация. Сброс воды с ироезжей части дороги осуществляется в продольные лотки, расположенные вдоль кромки ироезжей части, а затем в поперечные лотки, устраиваемые на откосах насыпи, высотой более 4 -х метров, при продольном уклоне более 0,03 , а также на вогнутых кривых. В конце ыотков, вдоль откосов насыпи устраиваотся гасители для предотвращения эрозии насыни земполотна.

После завершения строительства автодороги объездная дорога и стройилощадки. подлежат рекультивации. Организация строительства прсдусматривает выполнение строительных, монтажных и специальных работ поточным методом с соблюдением технологической последовательности, строгое собноденне призил техиики безопасности и требований по охране окружаншей среды.

Оиенка воздействня намсчаеной деятености на окружаюшую среду (OBOC)
Нроектом предусмотрены слсдующие мероприяияи но охране окружаюней среды: по-
 автотехники; обеспечение качества дорожното покрияяя. организация дорожного движения: снятие и хранение почвенно-плодородного слоя с последуюшим использованием его при рекультивации па временно занимаемых земиях и озеленении придорожной полосы. перевозка пылящих материалов в транснортных средствах, снабженных брезснтовыми пологами. установка спецконтейнеров для разничных видов отходов. вывоз строительного мусора.

Основными источниками воздействыя на окружаюиую среду иа территории проектируемого объекта будут являться строительные работы. Расход строительных материалов составит: груит - 25607,6 т, щебень - 385585.1 г, ПГС и песок - 1723.41 т, цемент - 61,9346 т. битум - 405,02 т. эмаль ПФ-115-0.027: т, эектроди Э-42А - 0.2798 т, дизтопливо для строительной техиики - 995,2305 т. бензии дия строителиной техники $-482,7323$ т. Настояшим проектом определены выбросы загрязияюиии веишетв голько при строительстве автодороги. выбросы загряияюших вешеств от вахтовото поселка н перелвижного ЦБЗ будут опрелены отдетьным проекาом.

Выбросы загрязняюиих веществ в атмоереру ири строительстве проектируемого объекта составзт:

Наименование венества	rrod
Железа оксндд	0,0028
Оксид марганца	0,0003
Диоксид азота	45,8763
Сака	9,6871
Диоксид серы	10.9178
Оксид углерода	249,5224
Фтористые соединения	0.0001
Бенз (а) пирсн	0.00006
Kсинол	1.8031
Уайттспирит	1.8
Углеводороды	41,115
Альдегиды	3.9631
Пыль неорианческая (более 70% двуокини кренния)	656.32
Пыль неортаническая ($70-20 \%$ двуоксисн кремння)	347.0907
ВСЕГО	1368,0988

Данные выбросы носят временный и неортаннзованный характер. При эксплуатации автомобильной дороги стационарныс источиики вилелення загрязияюших вешеств в атмосферу отсутствуют.

При строительстве автодоропи под вынуждсниый снос попадают зеленые насаждения (деревья в количестве более 6000 ншт., в основном породы карагач и акация). В целях компенсации вынужденной вырубки зеленых пасаждений предусматривается озеленение придорожной поносы.

Согласно СНиП РК 3.03-09.2003 аля предохраиения конструкции земляного полотна от переувлажнения поверхностными водами и размыва прслусмотрен водоотвод с повсрхности просзжей части за счет поиеретиого уклона. Водоотвод осушествллется кювстами в понижснные места придорожной поносы. Но завершении строительства земли. занимаемые строительными плошадками и объездной порогой, подлежкат рекультивации. Рекультивация выполняется в два этапа: техническая и оиолюическая рекультивация. Участок автодорони после окончания строитеныыых работ онииастяя от строительного и бытового мусора. Весь строительный и бытовой мусор вывознтся иа пюинтон ТБО.

Выводы
Рабоочий проект «Строитепьство а/д «)бход г. ІІьммкент» с км 2231 а/д М-32 «Гр.РФ (на Самару) - Нымкент» с выходом на 674 км $9 /$ / A-2 «Хоргос-Алматы-Шымкентгр.Р.Узбекистан» СОГЛАСОВЫВАЕТСЯ.

Начальник ОГ'ЭЭ

Б.Сатенов

 (1 pecialspathas!

() ${ }^{2} 41$

 " (
(on macosanto:

antesef V! IMmbind

"(binad opota Illimbert"

 whath blempats

[^9]

[^10]
ТАБЛИLА 1

(ремеввке-

Maspar"

ween is thmat !

иенриянини

XI) 13.
(bun:1.2

Rantiplity
1:14.1 S.111
nis.
4no.....4

Описанис археооияческого объекта	Ндинчие поддемного
	археологического матеpuaila

 ar: ín io

 :1 :

hapamber hatulat -i"

ver lan man in

(4. 1.4 :
(1)

Гсографичсекие координаты
$\sqrt{1220.294}$ $16,943.1119$ Pw, 1, ? 3.30

10．Ioce．antic Kıb子，
ロиї•－2
V111P－\1．
138．（ ${ }^{\prime}$ ）
（1010）24

 U月 W以

 （かい）

Pwoventanmin:

 ! 1.

[^11]

OHTYCTIK KAЗAKCTAH
 ОЕЛЫClIHbH
 ТАВИFИ РЕСУРСТАР ЖЭНЕ
 ТАЕИFAT ПАЙДАЛАНУДЫ PETTEY
 БАСКАРМАСЫ

уПРАВЛение
ПРИРОДНЫХ РЕСУРСОВ и
РЕГУЛИРОВАННЯ
TIPUPOДOПOTЬ3OBAHИS
IOKНО-КАЗАХСТАНСКОЙ ОЕЛАСТИ

160012, Шымкент қапасы, Республика даңғылы, 6
160012. город Шыімкент, пр. Республики. 6 ren/факс: 8(7252) 31-07-21 e-mall: dep-shm rumblerru

тел: $8(7252) 31-07-21$

Ожно-Казахстаиский областной депнартамент Комнтета автодорог MTиK PK

उАКЛІOYEHUE NO 000145
государствениой экоюогшческой экспертнзв на рабочий проскт «Реконструкиия авгомобильной дороги «Гр.РФ (па Самару) - ІІымкенр км 22.31-2260"

 10.102007 r.).

Заказином проекта является Іжио-Казастанский обдастной Дегартамент Комитета aвтиіорог МТиК PK.
 равеп «Охрана окруяаноей среды». обимвление в тазете «Казахстанскаи правда» от 02.12 .2008 r.

Материаны поступили на рассмотрени $27.01 .200^{\circ}$ г. № $30-3$.

Обыни свсдения

 сти зекпи.

Учасгок авгодороги, подлжжаний реконрукиии, проходит по территории Орєбасннкого района ЮКО и г. Шымкеп. За пачало участка реконструкции автодороги принят ПК $0+00$ (с. БІтымак г. Шымкент), конеи -- ЈК $246+00$ (пересечение с автодорогой
 I! технической категории. Ширина проезжей части $6.0-7.5 \mathrm{~m}$, ширина земляного полотна от 12 до 14 m . Существуоцая дорожная одежда состоит из покрытия толщиной $12-21 \mathrm{~cm}$ и основания из гравнйно-песчаной смеси толюнной от 21 до 45 cm . Ширина существующего покрытия колеблется от 7,92 до 17.6 m . Толиина дорожной одежды неравномерная в попереяном и продольном разрсзах. Покрытие прелставлсно асфальтобетоном с содержанием битума $6,3-9,0 \%$ от массы. На большей части нокрытис !оивержено деформациям: трещиновапость, волны, кромочность, выбоины. сдвит. Ірасса автодороги проходит по богарным, пастбниным и оронаемым зсмдям, пересекая при этом сетесленные водотоки, ороситепьные канатын и арыки. Все водотоки, перссскаюцие трассу автодороги, являются временными. Поверхностный сток формируется главным образом за счет таных вод и наблодается в многородные годы.

В соответствии с заданисм ва проккирования автодорога "1" РФ (на Самару) Шьмкепт» км 2231-2260 является автодорогой 16 технической категории. Основнье технические парамегры, иринятые при проектироваиии: иирини земляного полотна $-27,5 \mathrm{~m}$, ширина проезжсй части - $2 \times 7.5 \mathrm{~m}$. число полос лвиження - 4, ширина обочин - 3.75 M , ширина радделительной нолосы - 5 m . Общее иаправление трассы ьог-восточное. Реконструкция выполнена по рансе проложенной оси трассы. ' расса запроектирована оцной осью по середине рєзделительной полосы, представляет собой упиряемую часть до параметров Іб технической категории с пебольшими изменениями раднусов кривых в плане. Продольный профияв загроктирован в соответствии с требованиями СНИП РК 3.03-09-2006 с учетом мансимального использования существуюцео земяннго полотна. Обцее протяжение реконструируемого участка 29 км. На ПК $84+00$ прн пересечении с а/д на ст. Бадам предусматриваетея етроительство транспортной развязки в ризых уровнях.

Проектом принят следуююцй̆ тип конс трукцин дорожной одежды:

- км 2255-км 2260: двухслойное аснантобетонио покрытие из LLMA толииной 5 см на битуме БНД 60/90 т горячего, пористого. крупнозеристого асыаль тобетона толииной 10 сан на́ оитуме БНД 60/90;
- км 2231 - км 2255: покрытие из цемептойтона толинной 27 см.

Кроме того, проєктом предусматривается реконструкция всех женезобетонных водопропускных труб, за исклочением двух $\ell=1.0 \mathrm{~m}$. которые подлежат демонтажу.

На период строительных работ дия риямещения дорожно-строитениных материалов. железобетонных и других конструкний, стояныи дорожно-строительной техники и водопропускных труб предусматривается устройство стронтельной площадки на ПК $118+00$, пиопадыо 0,9 га.

Для пропуска транзитного транспорта в цеяях обеспечения безопасности движения предусмотрено устройство временной объеззной дороги. С ПК $49+00$ - ПК $84+00$ объездная дорога проходит по зсмлям г. H ымкент, с ІІК $84+00$ по суцествующей автодороге БадамКайнар де ПК $124+50$ и далее по существуюинму просзду вдоль реконструируемой дороги до коми трассы ПК 246. Врсменная объсзлиаяя дорога устраивается тириной 10 m . По завершении реконструкции автодороги участок обтсззиюй дорогн поднежит рекультивации.

Система іюрожного водоотвода, разработаиная даниым ироектом, состоит из ряда соружений и отдедныы коиструктимиих мероприятий. предиазначенных тия предотвращения пореувлажнения земяянот полутиа. Для отвода поверхиостной воды иредусмотрено устройсто боковых воноотодных канав (коветов), труб для пропуека водотоков в води под земляным полотном. Водоиронускные сооружения устраиваются в местах пересечения автодороги с водотоками. суходоиами. поливными и сбрасными
 растительному слою.

После проведения реконструкции автонороги стройплощадка на ПК $118+00$ подлежит рекяльтивации под плошадку отдиха. Транспортная развязка и плошадка отдыха подлежат пзеленению. Также проектом предусмотрены автобусные остановки, плопадки для стоянки автомобияей, установка дорожнных знаков. нанссение разметки.
 спииианых работ иоточным методом с собподением технонониеской последовательности. сорогое соблюдение правия техники безопасюости и трейований по охране окружаюпей среzib.

Оиенка́ воздействия намсчасмой, ееятсиости на окружанщую среду (OBOC)
Проектом предусмотрены слелуюшие мероприятня по охране окружанощей среды: иостоянный контроль за техническим состоянием и режимом работы строительной
 сиятие и хрансние ночвенно-пнодородиого шоя с послелуниим использованием его при реєуитивани на временно занимнемых яемлях (обьезиал дорога и стройплошадка),
 поногами, устаповка спецконтейнеров дия ризпии, вния ов отопов, вывоз строительного месора.

При повсдении строительыых работ в имосферинй воядух будет выделяться пыль не-
 эмуисией в холодном состоянин, выбросы зырызняюиих вонеств в атмосферный воздух отсутетвуют. Согласно выполиениоо расчета выюрось пиии неортанической составят - 0,1295 Ге, 0,836 т/год. Даиые выбрось носят врсмсиный п иеорганизованный характер. При эксплуатации автомобильной дороги стаионариит источиики выделения загрязняощих веществ в a mocферу отсутствуют.

Согласно СНиП РК 3.03-09.2003 дия прсдохранения конструкции земляного полотна от всреувдажннния поверхностными водами и размива предусмотрен водоотвод с поверхности проезжей части за счет понисчюоо уклона. Водоотвод осуществляется коветами в поинженные места придорожної поносы. По запериении строительста земли. знийаемые строительной ннцадкой и объздної дороюой, нодлежит рекультивации. Peкультивация вынолняется в два этапа: технияескяя н биологическая рекультивация. Участок автонороги поеле окончания ремонтных работ очинаетея от строительного и бытового мусора. Весь строительный и бытовой мусор вьвоится па полнгои ТБО.

Виінодиы
Рабочий проект «Реконструкция автолобнинні , фороги "Гр.РФ (на Самару) - Шымкелту км 2231-2260\% СОГЛАСОВЫВАЕТСЯ.

Начальния ОГЭЭ

G. Сатенов

Eрмекоанин foi:
richell or γ

List of archeological expertise's

Given by	Customer	Section	Base of expertise	Conclusion	Recommendations
"Archeological Expertise"	KazNIIPI Dortrans	2055 - 2057 km Length of alignment - 20 km	Visual observation, archive materials, observation of stratigraphical situation, topographical maps	Monuments of archeological importance weren't found, no heritage areas	
		$\begin{aligned} & \hline 1398-1578 \mathrm{~km} \\ & \text { Length of } \\ & \text { alignment }-180 \\ & \mathbf{k m} \\ & \text { width of } \\ & \text { observation area } \\ & -\mathbf{4 0 0} \mathbf{~ m} \\ & (200 \mathbf{~ m} \text { from } \\ & \text { both sides }) \end{aligned}$	Visual observation, archive materials, observation of stratigraphical situation	9 object was discoveredCemeteries of XVIII-XX centuries They are located from 8140 meters from the axis of road Monuments of archeological importance weren't found, no heritage areas	During the construction works, man has to consider safety zones (buffer area) specified for cemeteries according to the SNiP, or to identify another dimension of the buffer area based on the agreement with the local authorities. In order to avoid damaging of the discovered objects it is important to install protection fences along perimeter of the each cemetery and control its integrity during the all construction period.
	KazDorNII	$1578-1702$ Length of alignment -124 km Kм, width of observation area $-\mathbf{4 0 0} \mathbf{~ m}$ $(\mathbf{2 0 0} \mathbf{m}$ from both sides)	Visual observation according the alignment was given by customer (coordinates of turn corners and schematic plan of the section)	Monuments of archeological importance weren't found, no heritage areas	
		$1837-1917$ Length of alignment -80 km км, width of observation area			

		$\begin{aligned} & -400 \mathrm{~m} \\ & \begin{array}{l} (200 \quad \mathrm{~m} \\ \text { both sides }) \end{array} \end{aligned}$			
"Archeological Expertise"	KazNIIPI Dortrans	2055-2057 km Length of alignment $\mathbf{- 2} \mathbf{k m}$	Visual observation, archive materials, observation of stratigraphical situation, topographical maps	15 monuments of history culture that part of Medieval town of Sauran (belongs to $15-16$ centure AD) are discovered: 14-suburban chateau 1 - kyariz ancient irrigation system	During the construction work in ordeı to avoid damaging of the discovered objects it is important to install protection fences along perimeter of the each monuments. In case of change of existing alignmen (road widening), and monument are inside a construction area, it is important to make urgent archeologic: servey on its screening and recultivation of all monuments (whic will preliminary cost is $110,900,000.00$ tenge). Construction can take place only after finalization of archeological recultivation work on a site
"Archeological survey"	Shymkent Kazdorprojec t	2057-2135		Some monuments of history culture that part of Medieval town of Sauran are discovered: suburban chateau, kyariz ancient irrigation system Medieval town of Tashanak	Preliminary cost of archaeological survey for all monuments is $175,944,660.00$ tenge It is important to make archeological survey on its screening and recultivation of all monuments. According to the local Kazakh legislation (article 2, The Law of the Republic of Kazakhstan "On Protection and Use of the Historical Cultural Heritage"): In case of finding out of the archaeological and other objects having the historical, scientific, artistic and other cultura significance during the performance of such works the enterprises, organizations,

			Single burial mound	institutions, public associations and individuals shall be obliged to inform the authorized agency for protection and use of the historical cultural heritage of this fact and suspend the further conduct of operations. The complex archaeological survey must be conducted before beginning of construction work
"Archeological Expertise"	Engineering Centre Astana	1702-1807 km	7 object was discovered- Modern cemeteries	During the construction works, man has to consider safety zones (buffer area) specified for cemeteries according to the SNiP, or to identify another dimension of the buffer area based on the agreement with the local authorities.

 Tomambemand

 Ca s :

 Hathatact

TAEIULLA 1

Нанменова－ hue namyt－ ниқа н его датвровка
（ревинвко） Man Xipry Masapal＂

戶斤口а－VIll－
（II） 1 ：
Womb，？

C Bermocto－

1．6t－1 S． 111
： 11.
4いい．．． 4

10 Itare.semme hisisti.ser sume- ? 11IH-XIX (16. (:)

4101024

$166^{4} 40.801$

Puc.1.2.4

Perovernimbin:

 : 1

 \&

\qquad

Appendix 5 Environmental Feature Maps

Appendix 6 Project Lot Details 1980-2057

\qquad

$\begin{array}{\|l\|} \hline \text { № } \\ \text { п/ } \\ \hline \end{array}$	Name of construction materials	unit measurement	
1	2	3	4
	1240-1330		
	Rubble mastic asphalt concrete -20	thousand tonne	113.889
	Dense asphalt concrete, grade I	thousand tonne	0.0802
	cellular asphalt concrete, grade I	thousand tonne	199.202
	cellular asphalt concrete, grade I I	thousand tonne	267.158
	rubble-sand mixture	thousand cubiq meters	274.215
	old road materials	thousand cubic meters	52.779
	fractional rubble	thousand cubic meters	215.291
	sand-gravel mixture	thousand cubic meters	436.126
	prefabricated rainforced concrete	thousand cubic meters	0.248
	concrete	thousand cubic meters	0.436
	cement mortar	thousand cubic meters	0.062
	Bitumen	thousand tonne	1.219
	Geotextiles, geo-grate	square meters	12476.83
	1330-1398		
	Rubble mastic asphalt concrete -20	thousand tonne	91.660
	Dense asphalt concrete	thousand tonne	0.280
	cellular asphalt concrete, grade I	thousand tonne	163.967
	cellular asphalt concrete, grade II	thousand tonne	217.706
	rubble-sand mixture	thousand cubiq meters	246.803
	old road materials	thousand cubic meters	58.250
	fractional rubble	thousand cubic meters	61.393
	Камень	thousand cubic meters	0.080
	sand-gravel mixture	thousand cubic meters	272.082
	prefabricated rainforced concrete	thousand cubic meters	0.837
	Concrete	thousand cubic meters	1.485
	cement mortar	thousand cubic meters	0.124
	bitumen	thousand tonne	1.007
	Geotextiles, geo-grate	square meters	607430.2

№	Source of raw materials		Railway delivery		Auto delivery		Intermediate distance from existing highway, km
	Name of materials	Name of supplier	Station of material delivery	Distance, km	Station of material delivery	Distance, km	
1	Sand-gravel mixture, sand	Borrow pit «Besharykskoe LLC «UAD»	Aral See station	680	Aral See station	1 km until 1361 km	52
2	Fractioned rubble, stone, attrition milling	Borrow pit Mutodzharskie "Koktas-Aktobe" JSC	Aral See station	355	Aral See station	$\begin{aligned} & 1 \mathrm{~km} \text { until } \\ & 1361 \mathrm{~km} \end{aligned}$	52
3	Asphalt concrete, black rubble	Asphalt Concrete Plant near highway (ACP) CP(Control pit) 1240, CP400			Asphalt Concrete Plant near highwayCP 1240, CP 400		20
4	Bitumen	Asphalt Concrete Plant near highway CP124O.CP400		-	Asphalt Concrete Plant near highwayCP 1240		20
5	Prefabricated reinforced concrete, road signs, metal structures	$\begin{gathered} \text { AZMK LLC } \\ \text { AEDZ LLC } \\ \text { Almaty } \\ \hline \end{gathered}$	Aral See station	1675	Aral See station	$\begin{aligned} & 1 \mathrm{~km} \text { until } \\ & 1361 \mathrm{~km} \end{aligned}$	52
8	Water for technical use	water intake of Aralsk city 1362 km, Arelkum settlement 1401 km			water intake of Aralsk city 1362 km, Arelkum settlement 1401 km km		49
7	Materials from special reserves	Aral See station			Aral See station	$\begin{aligned} & \hline 1 \mathrm{~km} \text { until } \\ & 1361 \mathrm{~km} \end{aligned}$	52
8	Geotextiles, geo-grate	Aral See station			Aral See station	$\begin{gathered} 1 \mathrm{~km} \text { until } \\ 1361 \mathrm{~km} \end{gathered}$	1
9	Rubble for making asphalt concrete	Borrow pit Mugadzharskie «Koktas-Aktobe»	Aral See station	355	Aral See station	$\begin{gathered} \hline 1 \mathrm{~km} \text { until } \\ 1361 \mathrm{~km} \end{gathered}$	43 on Asphalt Concrete Plant (ACP)
10	Bitumen, mineral powder for making asphalt concrete	Aral See station			Aral See station	1 км до 1361 км	43 on Asphalt Concrete Plant (ACP)
11	Stabilizing addition to Rubble mastic asphalt concrete	TD «RASTOM» Moscow city Almaty station	Aral See station	1675	Aral See station	1 km until 1361 km	43 on Asphalt Concrete Plant (ACP)
12	Soil Stabilizer	Astana city	Aral see station	1607	Aral See station	1 km until 1361 km	52

KazNIIPI Dortrans

$$
1980 \mathrm{~km}-2057 \mathrm{~km}=77 \mathrm{~km}
$$

1 Description of area

The road passes through the territory of Zhanakorgan district of Kyzylorda region. The 4 settlements exist along the reconstructed part of the road. Railway with the station of Zhanakorgan is situated at 3 to 12 km distance. The electrical network is well developed in the region.

The route passes at the southern foot of the spurs of Karatau mountain ridge, along hilly outskirts of hills. The flat terrain is typical for beginning section of 1980-1997 km. The other sections of the road pass along cross-country.

The route of existing road crosses several dry riverbeds of temporary watercourses. According to the seismic sampled the areas is a 62-point seismic zone.

There is light dust-like loamy soil of half-hard and hard consistency with power up to 4.5-5.0 m and $1^{\text {st }}$ type slumping properties. Underneath here and there is gravel soil.

2 Existing road

The width of carriageway of existing road of III technical category is 7.0-9.0 meters. The width of road shoulder is $3.0-6.0 \mathrm{~m}$. The surface of road is rough, it's thickness is up to $2.5-3.0 \mathrm{~cm}$. There and here two-ply pavement. The top layer's capacity is $5-8 \mathrm{~cm}$; bottom layer's capacity is $5-15 \mathrm{~cm}$. The seam of gravel ground with sandy aggregate, with capacity of $5-15 \mathrm{~cm}$, is between top and bottom layers of asphalt surface. The foundation of pavement is made from gravel ground with sand aggregate with capacity of $5-50 \mathrm{~cm}$.

The roadbed of existing road is made from side of route's reserves.
The maintenance of the existing road is complicated by irregular surface subsidence due to the lack of compression during the construction of ground that was placed as high embankment.

3 New road

3.1 Km 1980-2012

The alignment from 1980 km to 1986 km is laid on the left side at a distance of $7-9 \mathrm{~m}$ from the existing road axis. The road alignment is straightened at the section of $1986-2009 \mathrm{~km}$ bypassing the settlement of Zhanakorgan. The alignment from 2010-2012 km is planned to build on the left side of the road and partly along the existing road axis. The largest longitudinal gradient at the site is 34%. The total length of the route is 32 km .

3.2 Km 2012-2057

The alignment is laid on the left side of the road at a distance of $7-9 \mathrm{~m}$ from the existing road axis.

Exceptions are the approaches to the bridge across the River of Besaryk at the 2053 km , which's distance is 14.8 m . The largest longitudinal gradient at the site is 34%. The total length of the route is 44.4 km .

4 Road geometry parameters

-	Technical category of the road	lb
	Design speed in km / h, the basic	120
	The number of lanes	4
	The width of lanes, m	3,75
	The width of shoulders, m	3,75
	The width of strengthened shoulders, m	0,75
	The width of demarcation strip, m	5,0
	The width of safety line of demarcation strip, m	1,0
	The width of roadbed	27,5

5 Pavement

5.1 Km 1980-2012

- Rubble mastic asphalt concrete (RMAC 20)-5 cm,
- Hot coarse-grained asphalt concrete -10 cm ,
- High porous coarse-grained asphalt concrete -12 cm ,
- Sorted out rubble mixture, thickness of layer is 18 cm (Zhanakorgan-Kyzylorda (19801996 km) and 20 cm (Zhanakorgan-Shymkent (1997-2057km)),
- Gravel-sand mixture with thickness according to the directions of 20 and 25 cm .

The thorough repair of road pavement along the length of 14 km is planned at the existing sections of the road
Estimated volume of road excavation is 2430 thousand cubic meters.

5.2 Km 2012-2057

- Rubble mastic asphalt concrete (RMAC 20)-5 cm,
- Hot coarse-grained asphalt concrete-10 cm,
- High porous coarse-grained asphalt concrete -12 cm ,
- Sorted out rubble mixture, thickness of layer is 20 cm .
- Gravel-sand mixture with thickness of 25 cm .

The existing roadbed is planned to be used for building of new road after milling and cleaning of the existing pavement. It is planned to make layer by layer compressing of the top part of existing roadbed until 1 m thickness. Existing incline of slope contrary to sprinkling is going to be improved to get designed requirements.
Expecting profile road excavation is 2530 thousand cubic meters

6 Construction materials, sources and delivery schemes

Bitumen from Russia - railway delivery (2145 km)
Gravel, sand - from a local Shalkiin quarry (machine delivery 53km)
Reinforced concrete structures from Almaty - railway delivery(1040km)
Water from Syrdarya river and local lakes.

7 Drainage system

1980-2012

For Organization of drainage system it is planned to build:

- Round reinforced concrete pipe (pieces /linear meter): $D=1.0 \mathrm{~m}-2 / 30, \mathrm{D}=1.5 \mathrm{~m}-9 / 400, \mathrm{D}=2^{*} 1.5 \mathrm{~m}$ -

1/77

- Rectangular reinforced concrete pipes: orifice $4 \times 2.5 m-4 / 160$ pieces/linear meter

2012-2057

For Organization of drainage system it is planned to build:

- Round reinforced concrete pipe (pieces /linear meter): $D=1.0 \mathrm{~m}-4 / 60, \mathrm{D}=1.5 \mathrm{~m}-17 / 756, \mathrm{D}=2^{* 1} .5 \mathrm{~m}$ 2/154
- Rectangular reinforced concrete pipes: orifice $4 \times 2.5 m-3 / 120$ pieces/inear meter

8 Bridges

Placement	Obstacle		Total length, m	Dimensions, m	Area of bridge, m 2	Design
$1986+921 \mathrm{~km}$ on the bypass	The flyover at the intersection	119.3	$13.5+5+13.5$	3818	Construction of new overpass according	

Placement	Obstacle	Total length, m	Dimensions, m	Area of bridge, m 2	Design
of Zhanakorgan settlement	highway and railway			to the scheme $21+3 \times 24+21 \mathrm{~m}$	
$2052+628 \mathrm{~km}$	Existing reinforced concretebridge $3 \times 11,36 \mathrm{~m}$ across dry bed of Besaryk river	34	7	238	Can't be repaired, it is planned to dismantle bridge
$2052+628 \mathrm{~km}$	Dry bed of Besaryk river	36	$9.5+9.5$	684	Exchange of existing bridge with new one and the construction of new bridge near it $3 \times 12 \mathrm{~m}$

9 Traffic safety, bypasses

In order to organize efficient traffic it is planned:

- to use of existing roads,
"' to construct temporary bypass roads with pavement which's total length is 6.1 km ,
- overhaul repayment of the existing 10 km road with pavement from Shalkiya to Zhanakorgan, which is going to be used during the construction.

10 Environmental issues are developed by deputed company of World Bank "GeoData Plus"

It is planned to recultivate land temporary used for placing ground reserves, bypassing road, construction sites during the construction. Project includes the technical and biological stages of degradated land recultivation.
Technical stage of recultivation includes following works:
a) Preparation works

- Removal of fertile soil and its displacement in the dumps;
b) Recultivation works
- dismantling of temporary bypass road pavement and to use it for building of demarcation strip, the dismantling of temporary pipes, dismantling of temporary over the zero mark embankments;
- rough leveling of the areas used for bypass road, temporary roads, construction materials storages, flattening of slopes out-road reserves, the moving back of ground vegetation.
c) Biological stage of recultivation includes measure for recovering fertile layer after technical recultivation and other appropriate types of work. Fertile soil will be taken from areas of manufacturing during the work with concentrated ground reserves. This stage also includes flattening of slopes and work places of machinery.

11 Preliminary volumes of work

(Volume of work needs to be specified after design work completion and positive conclusion of state expertise)
A) Preparation of the construction site
-rebuilding of intersecting communications -31 pieces,
-the removal of fertile vegetation layer - 476500 m 3
-dismantling of road signs - 332 pieces,
-demolition of existing culverts-42.
B) Roadbed preparation: Profile volume of excavation works 4960 thousand m 3 , Repeated compression of the existing roadbed -914 thousand m 3 .
B) Pavement (thousand m2/thousand m3):

1980-2012
Pavement RMAC (Rubble mastic asphalt concrete) - 834/40,
Asphalt concrete on main road - 1450/161
Asphalt concrete for reconstruction of the existing road -115/13,
Basement from rubble - 887/175,
Gravel-sand mixture -1045/228.

2012-2057

Pavement RMAC (Rubble mastic asphalt concrete) -1252/58,
Asphalt concrete - 2085/266,
Basement from rubble - 1285/268,
Gravel-sand mixture - 1450/371.
C) Road infrastructure:

1980-2012

- road marking - 300km, road signs -1070 pieces,
- enclosed bus stop -6,
- auto parking -4,
- construction of buildings and structures of inspection pits -1.

2012-2057
road marking -2900km,
road signs -1050 pieces,
enclosed bus stop -6,

- auto parking - 6 .
D) Other specific road structures: - overpass: 2 reinforced concrete bridges, Industrial prefabricated reinforced concrete - 2468 m 3 .

2 Period of construction

Duration of construction - 48 months, including 3 months of preparation works.

Appendix 7 Cross Section

(

Участок дороги - 1240-1398

Категория/Category
$=\mathrm{A}$
$=\mathrm{B}$

Участок дороги - 1398-1578 Road section - 1398-1578

Поперечный профиль объездной дороги в насыпи (при пересечении каналов)

Поперечный профиль объездной дороги в нулевых отметках

Примечание:
1 Снимаемый плодородный слой при устройстве временной объездной дороги складируется в валик.

Tun 1

Tun1 Применяется: при высоте насыпи до 0.5 метров

Tun 2
Tun 2A

Тип 2А Применяется: при прохождении обьездной дороги по переуВлажненным участкам

1. Bсе размеры даны 6 метрах

ОТКОРРЕКТИРОВАНО ПО ЗАМЕЧАНИЯМ ГОСЭКСПЕРТИЗЫ

 OS: L W'9 Leek
 OлबПП

автомобильной и железной дорог к руднику

Тип 1 Насыпи высотой до 3 -х м

Тип 1- применяется на стесненных участках и ценных угодиях

Конструкция дорожной одежды

Узел A. M 1:50

Узел Б, М 1:50
Сборный бөтонный лотковый бпок Б-1-22 по кромке проезжей части

Верхний слой покрытия - щебӫночно-мастичннй асфальтобетон марки I щМА-20, битум $5 Н Д$ 60/90, $5-5$ см,
Горячий пористый крупнозернистый асфальтобетон марки 1, битум Бнд 60/90, Һ-10см
Горячмй высокопористый асфапьтобетон, битум БНД 90/130, h-12см

щөбёочно-песчаная смөсь СА фракциии 0-80мм, h-18 cm - Тип I-А
Гравийно-песчаная смесь (природная), $\mathrm{h}-20 \mathrm{~cm}$ - Тип I-A
Гравийно-пөсчаная смесь (природная), $h-25$ см - Тип $1-Б$

На раздепительной полосе и на отнесённых пөвых поворотах $R=15 \mathrm{~m}$ спои из асфальтобетона аменяктся на гордчий плотный мөлкозернистый асфальтобєтон, \dagger-Зсм, на основанни из разобранного сущяствующего асфальтобетонного покрытия, $\mathrm{h}-24 \mathrm{~cm}$, а в мәстах
уширенной разделительной полосы (>Зм), вместо второго споя осннвания и подстиппющего дорожной одеждь.

ТРАНСПОРТНАЯ РАЗВЯЗКА НА ОБХОДЕ П. ЖАНАКОРГАН

ПУТЕПРОВОД НА ПЕРЕСЕЧЕНИИ ОБХОДОМ
АВТОМОБИЛЬНОЙ И ЖЕЛЕЗНОЙ ДОРОГ К РУДНИКУ

ТИПОВОЙ ПОПЕРЕЧНЫЙ ПРОФИЛЬ
ЗЕМЛЯНОГО ПОЛОТНА

Appendix 8 Environmental Fieldwork

Appendix 9 Material Sources

6
\forall
Anobejejisudosaley

Yчасток дороги - 1578-1702 Road section - 1578-1702
 Yчасток дороги - 1578-1702 Road section - 1578-1702

Kатегория/Category
$\begin{gathered}\text { A } \\ \\ B\end{gathered}$

Yчасток дороги - 1837-1917
Road section - 1837-1917

Схема доставки дорожно-строитепьных материалов на реконструкцию
 участок ки 1877-1917

Appendix 10 Report Contributors

\square

Report contributors

This ESIA report was compiled by GeoDataPlus, who were assisted by Andrew Huckbody of Huckbody Environmental Ltd, based in the UK.

Name

L.A. Kuznetsova, Director, GeoData Plus
E.A. Babalyk, Project Manager, GeoData Plus
G.A. Dzhunussova, Chief Scientist, GeoData Plus
M.A. Dzhunussova, Chief Planner, GeoData Plus

A Huckbody, Director, Huckbody Environmental, www.huckbody.co.uk

Appendix 11 Phase 1 Public Consultations

Report on

> Public hearings on the preliminary assessment of the environmental impact by the project design during road reconstruction works, a section of the international transit corridor "West Europe-West China", financed by the World Bank.

In September, 2009 the employees of the "GeoData Plus" LLP, represented by Mr. Babalyk E.A., a Deputy Director and Ms. Dzhunusova G.A., an Environment Specialist, Pryhodkyn I.V. GIS Specialist with the employees of the Administrations of the Committee on Transport Infrastructure Development of Kyzylorda and South Kazakhstan Regions carried out the public consultations of the Preliminary Assessment of the Environmental Impact based on Feasibility Study for the sections of the international transit corridor "West Europe-West China", financed by the World Bank. In the weeks preceding consultations several 100's of information leaflets plus questionnaires were distributed in the course of the field studies.

A notice on the planned public hearings has been published in the press:

- "Kyzylordinskiye vesti" newspaper, №115, September 10, 2008;
- "Nasybe" newspaper, №203, September 10, 2008;
- "Ontystyk Kazakhstan" newspaper, №153-154, September 10,12, 2008.

Following groups of people have been invited to the Public Hearings:

- All local population, whose interests are likely to be affected during road reconstruction;
- NGOs working in the environmental and social areas;
- Representatives of the official authorities in the area of environmental designing and social issues.

Public Hearings have been conducted in the following settlements:

Kyzylorda:	16.09 .2008 r.
Turkestan:	17.09 .2008 r.

77 local people participated in the Kyzylorda city hearings. During the event the local participants raised a number of issues concerning the project implementation period/duration, compensation amounts, pedestrian crossing (walkways) arrangement and etc. The audience was satisfied both with the clarifications of the specialists of GeoData Plus LLP provided in response to the questions raised and World Bank Environmental and Social policy as a whole. There were some useful comments or recommendations from the part of the participants in regards to the design and construction stages of the project.

35 locals of Ikan and Turkestan have attended the hearings in Turkestan. The issues raised were mainly related to the status of the road (free or paid), job opportunities for local people, compensation amounts, availability of the cattle droves and etc. The audience was satisfied both with the clarifications of the specialists of GeoData Plus LLP provided in response to the questions raised and World Bank Environmental and Social policy as a whole. There were some useful comments or recommendations from the part of the participants in regards to the design and construction stages of the project.

The Consultant noted that at this preliminary stage of the project (consultation on EIA TOR and general concept) interest and participation from the project proponents was weak. The consultations were thus carried out mainly with resources and under the auspices of Geodata

Plus. In contrast the general public and affected population took a vivid interest in the project. Apparently this campaign was one of the first instances of public disclosure of project details. There seems to have no effective public outreach and information performed at the feasibility study stage and the topic of the motor road renovation did not receive wide media coverage.

To summarize all the hearings conducted in the city of Kyzylorda and Turkestan, we may conclude that local population had not been previously informed about road reconstruction project. The main issues raised at the public consultations were the issues related to the provision of employment for local population during the reconstruction, amounts and types of compensation for and land plots to be potentially acquired. At this stage there appeared to be little concern from the population to questions related to the environmental and social impact of the road renovation. However, based on their comments and with the aim to minimize negative impact the following recommendations could be collected:

At holding of the public consultations on the environment impact assessment stage it is necessary to take into consideration the following issues:

- arrangement of the public consultations with invitation of all people which interests are affected in the process of the road renovation;
- official publication of the environment impact assessment on the Web portals of the Roads Committees of the oblasts and regions of the project 1 month before the opening of the public consultations;
- publication of the goals, objectives and main results of the environment impact assessment in the mass media;
- provision of the hard copy of the environment impact assessment to any representative of nongovernmental organization or individual person upon the request;
- invitation to the public consultations of the nongovernmental organizations operating in the field of the ecology and social problems;
- invitation of the representatives of the official authorities in the field of the environmental design and social problems;
- active participation of the design and planning organizations in conducting and preparation work of the public consultations.

At the design stage:

- For the Designers to include cattle droves in rural areas mainly occupied with livestock breeding;
- For the Designers to envisage arrangement of the safe pedestrian crossings (ground or underground) in densely populated villages;
- To inform local people about Resettlement Plan procedures, especially compensations of farm workers (rice and cotton fields).

At the construction stage

- The Waste Management Plan must be developed at the start of construction;
- The Roads Committee of the MTC should work out the issue related to explaining to the local executive agencies, and local population the process and mechanisms of land acquisition and compensation (monetary or land replacement);
- Control of construction materials carriers will be used - checking that all environment requirements are being maintained.

Протокол предварительных общественных слушаний ОВОС проекта строительства международного коридора Западная Европа - Западный Китай.

Место проведения слушаний:
г.Кызылорда, здание Кызылординского гуманитарного университета
16.09.2008г. 15 часов 00 минуг

Присутетвовали:

Председатель общественных слушаний ректор
Квзылординского гуманитарного университета к.и.н. С.К.Серикбаев
Ответственный секретарь декан факультета
«жономики и педагогики»
к.э.н. Д.Д.Ешпанова

Представители ГеоДата Плюс
Представители КАДМТиК Кызылординской области
Представители общественных организаший:
Ассоциация «Гражданский Альянс Кызылординской области» Д.Акмагамбетова
ОО «Союз молодых журналистов»
С.Баймаханов

НПО «Экосфера KZ»
Ф.Н. Турсынбаева

Преподаватели и студенты, жители города Кызылорды.

Выступили:

Зам. директора ТОО «ГеоДата Плюс» Е.А.Бабалык - представление творческого коллектива разрабатывающей раздел ОВОС участка строительства дороги с 162 км дороги М39 до границы Актюбинской и Кызылординской области общее ознакомление с темой слушаний.
Г.А.Джунусова и подробно рассказала присутствующим о целях разработки ОВОС, о процедуре проведения ОВОС, о требованиях Всемирного банка для данного проекта.

Вопросы и замечания.

1. Bопрос: Когда планируется строительство дороги?

Отвечал E.A.Бабалыык: Сейчас работа находится в стадии рабочего проекта, начало работ будет зависит от многих причин: первое - нужно создать рабочий проект; второе - предстоит выкуп или выплата компенсаиий всем владельцам участков чьи земли или строения попадают под строительство дороги и пока не будут решены эти вопросы строительство начато не будет. Об этом говорини представители ВБ (всемирного банка) который принимает участие в финансировании данного проекта вместе с правительством PK.
2. Bопрос: Каковы будут компенсации за участки?

Отвечал Е.А.Бабалык: Я не могу ответить на этот вопрос т.к. в каждом отдельном случае будет приниматься отдельное решение.
3. Bопрос: Будут ли предоставлены рабочие места, при строительстве дороги и будет пи она платной?

Отвечал Е.А.Бабалык: Определенно компании, которые будут строить дорогу, будут привлекать местное население это будет логичным, но ие буду утверждать, что так нменно будет. Насчет того будет ли она платной или нет, будет решать правительство, а пока таких решений не принято.
4. Bопрос: Предусматривается ли проектировщиками переходы цля "скотины», так как трасса будет скоростной, то возможности пересечь её для «скотины» нет.

Отвечал Е.А.Бабалык: Да конечно будут запроектированы скотоирогоны согласно нормативно-технической документации действуюцей на территории PK.
5. Bопрос: Все знают что экологическая ситуация в Кызылординской области не очень хоропая. Будут ли предусматриваться лесопосадки или кустарные посадки вдол, дорогн?

Отвечала Г.А.Джунусова: Данным вопросом (озеленением) занимается генеральный проектировщик, паша цель оценить воздействие и предусмотреть мероприятия, если это будет необходимо мы предусмотрим посадку зеленых насаждений для целей уменьшения негативного воздействия на окружающую среду.
6. Вопрос: Вы на карте показали объезд п.Жусалы. Я знаю, что вместе где будет ироходить проектируемая трасса находиться свалка мусора и озеро. Какое воздействие ироизведет на озеро строительство дороги и не свалят ли строители весь ттот мусор в озеро? Может за счет строитеньства дороги будет ортанизованна сваика мусора в определенных транииах? Спасибо.

Отвечала Г.А.Джунусова: При оценке воздействия нами будет уделено особое внимание проблеме несанкционировапной свалки мусора на всех участках, а ғакже булет разработан план управления окружаюцей средой в котором описаны меры по рененик, всех проблем связанных с воздействием на окружающую среду ан всех участках юо всем эапам реаннзации проекта.

Cписок присутетвувощих на саушяниях．

16 Aewernoba iencenore basaplenobrea einugencraa \＃nuif

 21 Carequete ele grenifuct \qquad
有有有
 23 Ixuemoki＂ylusitu empopuitke \qquad

25 Sexgewoin jingmín emyginitha
$\frac{26}{27}$

Axuemobr tienyu
cmigety Axusern
unsfeternka $k i=1 l$
\qquad －

33 rantixatco

DA tymizas On \qquad

36
37
38
39
40
41
42
4

\qquad

Синсок присутстнуюпих на слушапиях

63 Cavioperacta leppepm imygetm 63 Cavigseracta lepyepm imyperm
65
65 65 Lheugoruera fiersen cmesoexm
 72 An+eтarienola measequy cospeni theeved

 80 Mawbitanoba tapointa eryserf 81 Mepacbo diexufe copden bonedes,

Ilphty ne cematin:

 1 A Inymycoma
\section*{和ыстутити:}
 doporis mD revoï elywitytio

Dompocta m замечанни

4. Bопрос: Будут ли предоставлены рабочие места, при строительстве дороги и будет ли она платной?

Отвечал Е.А.Бабалык: Определенно, компании, которые будут строить дорогу, будут иривлекать местное население, это будет логичным, но не буду утверждать, чго так именно будег. Насчет того будет ли она платной или нет, будет решать правитепьство, а пока таких решений не принято.
5. Bопрос: Где планируется добывать материалы для строительства?

Отвечала Г.А.Джунусова: Места добычи строительных материалов будут определены генеральным проектировциком.
6. Воирос: Часто вижу сбитых, раздавленных манинами животных. Будут ли предусматриваться скотопрогоны?

Отвечала Г.А.Джунусова: Да будут. Эти места также будут определены генеральным проектировщиком. Этому большое внимание уделяют МФИ тк, строительство дороги и её эксппуатация не должны отрицательно влиять на привычный склад жизни населения.
7. Вопрос: Какая планируется дальнейная работа по освещению вопросов данного проекта или на этом связь с нами будет прервана?

Отвечапа Г.А.Джунусова: На брошюрах которые мы Вам раздали есть адреса и гелефоны по которым вы можесе с нами связаться по всем интересующим вопросам. После окончания работ по разарботке проекта ОВОС мы также будем проводить общественные слушания на которых предоставим вашему вниманию проделаную нами работу. О дате п времени проведения вы можете узнать из СМИ.

Снисок дрисутствуюцих на с.тушаниях

реализаиии проекта и учета пожеланий жителей огдельных областей. Разработчиком проекта является ТОО «ГеоДатаПлюс».
(т имени заказчика и разработчиков проекта просим вас, жителлей Кызылординской области иринять активное участие в обсуждении «Проекга реконструкцйи мёждународного транзитного коридора Западвый Китай - Западная Европа", поделиться с нами вашим мнением и обозначить вопросы, требующие, на ваш взгляд, повышенного внимания.

Мы, в свою очередь, готовы вни-
 предложения и замечания и по возможности ответить на все ваши вопросы.

Мнформания о месте и времени троведения обдественных слуша-

 Комитета автомобильннгх дорог МТК РК», г. Кывьлорда, ул. Желтоксан, 18 , тел.: 27-91-08, 26-25-37.

ТОО «ГеоДатаһлюс», 050012 , г. Алматы, ул. Амантельды, 70-17, тел.:
 $\underset{*)}{\text { 267-51-53, e-mail: geodata@network.kz }}$
 \section*{\section*{Кызылординские вести
№ 155
 \section*{\section*{Кызылординские вести
№ 155

 Кызылординские вести}

 Кызылординские вести}

От

 в ранках транспорінной соратегии, с цельн развиния транзитного потенциала Ресчублики Казахстан Кояитетам ивтомобильныхх дарос ири Минтранскаме началась работа над "Іроектом реконструкции междунарофного трапзитного коридора 3 ападный Kитай - Западная Eapona".Основной транспортной осью гранзитного коридора является автомобильная дорога, строительство которой предпонагается на базе существуюшей магистральной трассы республликанскопо значения, путем ее реконструкцни и доведения до международного уровня. Автомобитьная дорога общей протяженностью 2624,41 км начинается ва транице с Россией в районе населенного пункта Мартук, проходит по территории Актюбннской, Кызылординской. Южно-Казахстанской. Жамб́ылской и Алматинской областей и закаячинается на границе с Китаем у населенного пункта Kоргос.

Строительство значительного отрезка автомобильной дороги от
северо- занадной гранины Кызыл-

ЖОЛ ҚАТЫНАСЫНДДАҒЫ жАНАПЫ৷̆ немесе

Омтүстік Казақстан облысы аумағв үниін «Бапыс Қытай－Батыс Еуропа» атты халықаралыық транзиттік келік долізінін жаңорту жобасынын маңызы туралы

Көлік стратегиясын жхзете асьру жопында жане Қазакстан Республикасынын транзиттік ＂үчкіндітін дамыту мақсатында ҚР Нөлік жане номмуникация министрлігінін көліктік бақылау фомитет＂Батыс Қытай－Батыс Еуропа＂＂атты халықаралық транзиттік көлік делізінің жақарту жобасын іс жчзіне асыруды қолға алдьт．
Транзиттік көлік дэлізін жаңғыртудың негізп нысаны қплыптасқан мемлекетгік автомобиль ＊олынын казірге дейінгі қалпын хапықаралық ялгіне сзй келтіру болыпп табылады．
Ұзындығғы 2624,41 шақырым болып табылатын автамобипь жоль Қазақстан мен Ресей менара сындагы Мартук елді мекенінің аумағынан баста－ зып，Ацгөие．Қызвлорда，Онтустік Қазақстан， Жамбын жане Аіметы облыстарынын аумақта－ рын аралал өтіп，епіміздің Кытай шекарасындағы Kоргас елді мекені аумагьнда аязталадьх
Қызылорда облысынын солтустік батысын дагы llыммент қаласы／Оңтүстік Қаэақстан облы－ ：ы／арасындагы жоп кррылысы букілдүни－ зжүзіпік банктің қаржысына іске асырьыады．
Оңтчстік Қазамстан облысынын Шымкент қдласьнда екі бағыттагы－－＂Самара－Шьмкент＂ және＂Термез－Таикент－山ымкент－Тарая－Алматы＂ мемлекеттік автомобиль жолдары қиылысады．

 Онда Шымкент＇Іуркістан қалаларын Gасқт еща мекендермен байланыстыратын жолдың миьль－ сулармн реттеу үигы айналма жолдардь салу носпарланган．
＂Батыс Қнтай－Daтьт Eypona＂атты халықара－ ыви транзитти көпіх далізі ретілде автомобиа
 тура жәнє елыніздің дүниежчзілік нарыптағы ор－木ын нөтеруге багцтталған экономикаиық мүдие ве пайық барлың алгы шарттары 6ар．

Көлік делінін негізінде жузеге асырылатын халықаральқ саудд－саттыктын қарқынды дамуы болашақта түриі өндіріске көсіпорын мен басқа да тетіктерге жака технологиялардың келуіне， жьлжымалы мулік нарыгинын және іскерлік ауқымының жетілуіне мумкіндік тугыза отырып， Қаэақстанның жаллы өлеуметтік－экономикалық жагдайынын өрістеуіне себепигі болады．

Оңтүстік Қазақстан облысы аумагындп жанар－ тылган жылдам жоддың салынуы қалылтзсқан көлік өткыу қабілеттілірін ұлғайтады және көпй қатынастарынын сапасын көтеріп кана коймай． жалпы аймақ тномомимасының қартынды даму－ ын жеделдетеді．

Халықаралытқ транзиттік көлік дәлізікін жаңару жобасының маңызды бөлігінін бірі－ав－ томобиль жольн салу және пайдалану барысьи－ да оньің қоршагак ортаға тигізетін кері өсерін азайту．Осы мақсатта＂Қоршаған ортага тигізу асерін багалау＂／қоәБ／нысанын орындау ар－ қылы осы курделі нысаннын негізінде экология－ лық тендестік пен әлеуметтік тыныштықты сақ． тауга бағытталган негізгі шаралар усынылады．

ҚОӘБ нысанын жобалау барысында басты ақпараттың көзі ретінде жаңа жол салу жобасьн талқылаута，жергілікті турғындармен кездесулер өткізу қажет．Соның барысинда аньқталатьн ес－ кертулер，нетіні шарттар жергілікті жагдайға сай назарга алынады．

ҚОӘБ нысанын＂ТеоДата Плюс＂ЖЩЕС－1 жоба－ пап．дайындайды．Сонднктан дд 6 із Онтустік Қазақстан облысмнын тургындарына талсырыс беруші жене жобалаушылар атынак＂Батыс Қытай－－Батыс Еуропа＂атты халықаралық тран－ зиттік көлік дөмізінің жаңарту жобасин талмия пауға ерекше назар аудару қажеттілігін ескерте отырып，соган байланысты маңызды сұрақтардн көтеріл，бізбен пікір алысып，ой бөдісуін сурай－ мыз．Әрбір усннысқа зейін：сала қарап，мумкін－ иілікке сайкес барины сурақтереа науап беруче тирысатыз．

中ондар арқьпы байианыса аласьқдар：

T00 afeoflara ninocy， 050012 ，
Aлматы копасы，
Amowrenai кewreci，70－17， ren：／727／267－51－63
$/ \pi / \phi /, 267-53-40,267-51-53$ ，
e－raxiligeodata＠network．kz
Онтустик Казахстан №153－154

ҚЫЗЫЛОРДА ФБЛЫСЫ АУМАҒЫ ҮШНН "БАТЫС КЫТАИ-БАТЫС ЕУРОПА" АТТЫ ХАЛЫКАРАЛЫҚ ТРАНЗИТТІК КӨЛІК ДӘЛІЗІНІН ЖАНАРТУ ЖОБАСЫНЫң МАҢЫЗЫ
 (қайталау)

Көлік стратегиясын жузеге асыру жолында жоне Қазақбтан Республинасының транзиттік мүмкіндиін дамыту мақсатында КР Көпк жане коммуникация министрлігінің аятомобиль жолдары комитеті "Батыс Қьтай-Батыс Еуропан зтты халық аралық транзиттік көлік далізін жаңарту жобасьшн іс жузіне эсыруды қопға алды.

Транзиттік келік депізін жаңартудың негізг мақсать капыптасқан мемлекеттік автомобиль жолыіның қалпьн халыңаралық үлгіге сай келтру болып табыппады

Ү зындығы 2624,41 км автоиобиль жопы Каздн, стан миті Ресей шекарасындағы Мартук елді мекенінің аумағынан бастапьп, Актобе, Қызылорда. Онтүстік Казакстан, Жамбып және Адматы обпыстарыны; территориасьін кесе өтіп Қазақстан мен Қытай шекарасындағы Қорғас епп: мекени аумағынд аяқталады.

Қызыпирда облысының солтүстік-батыс 山епарасы мен Шымкент қанасының (Онтустік Казакстан обпысы) арасындағы зГағғықтың құрылысы Бчкилдниежүзілік банктің қаржысына іске асырылады

Кызылорда обпысы аумағында жаңа ұзындығы 810 нм халықарапық транзиттік көлік дәлізінің Бағдары Арал тенізінін соптустік. нығыс жағынан Сырдария взенініқ он жақ жағасы бойымен өтеді

Жоба бойыниа Қызылорда, Арап, Казапы, Жосаль малапары, Шиепі, Акжарма. Шаған. Жаңақорған және басқа епді мекендермен автомобипь жолының қилысуын шеттеу үшін айнапма жолдарды салу жпспарліанған.
"Батыс Кытай-Батыс Еуропа" ат ты хальықаралық транзиттк келік делізі ретінде автомобиль жолының салынуы - халықтың әп-ауқатын жақсартатын және елиміздің дуниежузплк нарығындағы орнын көтєретн экономикалық ынтасы болуына барлық алғы шарттары бар.

Келік дөлізіның негізінде асырыпатын халықаралық сауда-саттықтын қарқынды дамуы болашақта жаңа технологиялардың келууне жылжымалы мупік нарығының жөне басқа іскерліктердің жетілуіне мүмкіндік туғыза отырыпт. казақстанның жаппы әлеуметтк-экономикалық өрістеуне себеп болады,

Қызыпорда обпьісы аумағында жаңа жылдам журетін жолдың салынуы, қальптасқан жолдың өтклу қабілетін ұлғайтып және көлाк қатынастарынын сапасын көтеріп қана қоймай, жалпы аймақтын экономикасының қарқынды дамуына себеп бопадьі

Хапықаралык транзиттік келік делізін жамарту жобасынын манызды белігінің бірі, автомобиль жолын салу және пайдалану барыкында қоршаған ортаға тигізетін асерін азайту мақсагында орындалатьін, кқ̆ориаған ортаға асерін бағалау" (КОӘБ) нысаны болып табылады. Осв курделі нысанның негізінде зкологияпық теңдестікпен әлеуметтік тынвиытықты сақтауға Бағытталған негізгі шіаралар ұсыныпады

Жана жол салу жобасын тапқыдудың басты мақсаты тұрғындармен қездесп. жергілікті жағдаиға сай ескерту, ұсыныстарды назарға апа отырьп жобаның мегізгі шарттарын анықтау

ҚОәБ нысанын дайындайтын жобәпауцы ұйым ЖШС «Г еоДата Плюк» болып табылады.

Кұрметті Қызылорда облысының тұрғындары Сіздерд! тапсырысыы және жобалаушыпар атынан "Батыс Қытай-Батыс Еуропа" атты халықарапық транзиттік көлік дәлізінің жаңарту жобасын тапқыпап, ерекие на зар аударуын кажет еғетін маңызды сұрантарды көтеріп, бізбен вірте кiжiр таласып ой бөлуперінізді сұраймыз

Сіздердің ұсыныстарыныздя зейн салып тьндай отыра, мимкіншілікке сайкес Сіздердің барпық сурактаңымызға жауап беруге ьнтапанамыз.

Қоғамдық тыңдау еткізу орны жене уақыты жайьнда ақпарат бөлек жарияпанады.

Бізбен байпаныс: Жергіпікті департамент. ЖШС «ГеоДата Плюся, 050012. Алматы қаласы. Аманкөпді көиесі. 70-17, тел: (8727) 2675163 (T/中), 26753 40, 2675 53. 53 , e-mail: geodata@network.kz

Қызылорда қаласы №18 Тел: 27-91-08, 26-25-37.
ҚР Транспорт және коммуникация министрлін автомобиль жопдары комитеті Қызылорда о6лыстык департаменті.

Насибе №203

Appendix 12 Phase 2 Public Consultations

배
N. $2-3 \bullet(18612)$
10 кадтар
2009 жыл, севбі

сепкесі, Т.Рыскұдов кетесі, 14 үбдде, 15 кадтарда сагат 11.00 -де өгоді.

№ 5 (17578)

[^12]2009 жьг

1920 аня,

ХАБаРААНДЫРУ

Kызыдорда обыmerbs

 (eyulisep M-32 "CamapaHinmentr. (bante Eypona - bathe Knтaй) antomo-
 sempy жобапын meminaterutili kopuarat optata

 анр, conalab-ak Gapabk

aicumi.
Коғамдык тындаулар: 2009 жылдын 16 кантары күні сағат 10.00 -де Жа нақоргаи ауландык әкімдіriнде.

2009 жыллын 16 кацтары күиі сагат 15.00-пе lЈиелі аудандык окімдігінде

2009 жьццин 17 кантары күні cavar 10.00 -де Кызылорда калалык әкімдігінле.

Kes Kemmen tybndacan
 мекенжайға хабартаса шыасыздар: Қызылорда каласы, Желтоқсан көшесі, 18. Тел: 27-77-06, 27-68-62, 26-25-41.

 ніл дорот и разработчики троектов сообицаюо о ироведенин общественных суушаний по пценке возайствия на окружаюндую среду ириекнных решеннй реконструкиин авпомойльной дороги M-32 Самара-ІІымкснт (Занадная Еиpona - Западный Китай).
 организации, заинтсресованные 中изические в кридическне лица и все желаюоиие

Слушания состоя гся:

- в 15-00 16 яннаря 2009 г. - в по. 1 I несии в райакимяте;
- в 10-00 17 января 2009 r. - в л.Кызыдорде в поракимате.

По всем возннкаюшим вопросам нросьба обрапитьея по адресу: л.Кьзылорда, ул.Жептоксаи, 18, тет 27-77-0) 27-68-62, 26-25-41.

БРИФИНГИ

Г./ABHOE TPEБOBAHИE - РАБОТ

 fhay incro. Cpern mormectib
 :

 orom, kith p: Mbli मМ Ku: loay if pacck: Glatx a 141 y th 3655 goks romopabs ar BHCHPLHa CH

 чperobamal

Pyкobozil
 Dot sukous tia
 кументон mos пкол, 100 Gory kollick. rony funcam

Ha mbuext

 časabhat op
 ние рукивь.аи
 cist вb"lychat If मa obecticy Ayymath con vili. B aymath cros mexambat Had HeTamen

 YT opfatim:

СҮБЕЛІ СӨЗ

Эпиктет.

Ныммдым-саяси басьוлым
hepi E-mail: syrboyi@mail.ru, syrboyi@rambler.ru

ЖҮГІБАР

етуімізе тімек
 ректоран Эінма ғатуленериін 85 (y opuratipbita нан кейiн akmaHow hiduteriall skeyapa onfistede

ладьь. Осы мәселеге тоқтапған аймак басиыисы колледждегі дснс тербиесі және спорт уиымдастырупысы маманиығдын жетілдіруге кенес бериі. En бастысы, akimbil жұмыска орналаскаи колледж түлекгеріне түр!цн үй, каржы жағынан көмек беріледі легенине куаныи түрмин.

Кызылорда медициналык колледжінін лиректоры Акмарал Элназарова экімніи орта буьи медицина қызметкерлерін дайындау сапасына, білім дарежесін котеру барысына ден кодғанын ангімеледі. Колледжге откен жьны халықараыык сапа менецжменті денгейі енгізле бастады, бньл ол толыктай жүзеге асырылмақпыы. Облыс басшысынын назарын аударган ендігі бір моселе, фармацевтерді мемлекегтінесебінен данындау жөне клиникалик зертхана кызметкерлерін окыту ісіи колға алу кажегтігі болған. Өиткені, казіргі дэрі-дармектердін дені жеке көсінкерлер аркышы жеткізіліп жүр.
И. Обдікөрімов атындағы аграр-лшк-техникальк колледждін директоры Мехит Өтемүратов кабыллауда оку орныньн материалдык базасынын нашарлыгына, экономикалык жағдайыным төмендігіне токтанннын баяндады. Охім казіргі замангы сай мамандар даярлау, білім санасын жаксарту жайли „акты міндеттер жүклетен. Сонымен бірге облыс басшылығы таранынаи көмек болатынын білиірген.

- Opiajbк аркылы өткен жылы 6 мындай ацам артүрлі курстардан өтті. Оныи іпіные мүғалім де, есепиі, маденнет, алсуметтік сата, медиинны кызме ткері де бар, - деді кабыивудаи Кейія мемдекеттік кызметиыгерлі *әне бюджетrik саиа кызметкериерін кайта (нярауу жоне одариыи Біліки-
 директоры Калказбек Әжібеков. Oбible akimine atkapbifat is athart

Тәуепсіздік жылдары ішннде Қазақстан Респубпикасы взіны Ұлттық тарихындағы ен бір ауыр да. сындарлы кезенді бастан өткерді. Республика әпеуметтік бағыттағы нарықтық экономикаға непизделетін дербес және егемен мемлекеттіт, негізін құруға бет бұрды. Кептеген прогрессиөті, аукымды с-шаралардың натижесінде саясн жуйе мен мемпекеттік қррылым тубірімен өзгеріп. саяси жүйе топық трансформацияға vцырады. Мундай тарихи ісшарапирды іске асыру барысында Қазақстан хальықарапық нормалар мен қагидапарға сай келетін демокрагиялық жолды тандады.

Қазақстан Республикасы - унитарлы мемлекет. On басқа елдің құрамына енбейтін жөне құрамында өзге автономды ұлыстары жоқ біртұтас мемлекет болыл табылады. Eлдегі этносарапық қатынастаю мен саяси ииституттардың қапыптасуф, қоғам дамуымдағы барлєіқ үдерістер жаппы ұлуыы идея тұрғысында жургізілн желед! Себебі ұпттык идеясы қальптасқан қоғамда барлык ұлт пен ұлыстыи өкıпдері, билік оппозиция және жалпы зиялы қаушм өкілдері қоғамның өркендеуыне бірдей атсалысады. Бұл жағ дай қоғамдағы барлық топтардың елдегі жүріп жатқан реформаларға тікелей араласуына дәнекер болагыны анык Епиміздің бопашақтағы мақсаты - эркениетіі коғам киру жөне соп арқылы өлемдегг ен дамыған елу епдін қатарьна кірігу

ҚазақстанРеслубликасы тауелсіздік жылдарының алғашқы кезеңінде мемленеттін ныиаидардь: бепглеп, жана тұрпаты қоғамның алғашкы Ата занын қабылдады Enіміз апис және жақын шетелдермен тығыз саяси дилломатиялық қатынастар орнату және халықараиык беделді پйымдарға белсенді муше болую арқылы әлемдік қауымдастықта өзінің тәрихи орнын тапты

Епбасы Нұрсүлтан Әбишлы Назарбаевтьің ъйымдастыруымен олемдик діндер мен конфессиялардың басиыпары алғаи рет Астанада бас қосты Біздін елордамыз барлық дін өкіпдерінің бейбыт түрпе піхір апьнатын гұрақты ортапығшна айнапды Eип халыкарапық саясатта сирек кездесетінкбылыс. Муддесы ұстанатын қагидаттары артурлі. тіпт бір-біріне қарама-қайны келип жататын әртурп дін өкілдерыі" Астанада бас косуы - апемдег сзясзткерлер арасынца Н.Назарбаевиыи бедепнны өзе перден анагұрпым жоғары екендыі іны типық дәлели бола алады

№ 4 （16．687）
OPДИНСТИ हECTИ
whent www．kyucoz．kz
E－mailikizesti＠mail．ru

НА СОВЕСТЬ

GOM OOLHC：11 Bostmandas．
 ：аданах，сто－ інсм．Прини． в 428700 20－
 neктринаниの
 Crnocooc a mis^{2} ехническI：mat 1bLK olah lob
：मutha whar

 Ipamare alon ，нриянан pi． \＆mbirybar．s1
 pijmathe：d＂－ M．Mameto－ лыкона，patm

 clumblat of pyaycapar．

 himall Affilat－ 4Tax why ：1H．

 －Frof：ipati． Haydyyay a года нре ， wty cnop：ur． normphe？

 yeuresam lat ce バ gatura atath

 lén cbons bocistrantion：is．

Как pacckatala ：

 ish．11．Maymasen

 －a 1 － थ1

 \therefore \＆
 …

$$
\because \text { a }
$$

№ 5
 (17578)

※¥MA
9 қаптар

2009 жыл

Ұлттыік

1929 жылдың 1 आiлдесінен шығады
Шығу мерзімі: сейсенбі, сөрсенбі, жүма, сенбі я

 бастыктанияя као́b a, dat ani what to chatph

 ваепни Куанышбек Ыекаков айман

панbs ;

 тенке аргык түсті. At, длтыык корга 328 wipa тeme ayapbent

 taphon can cphtatabina rekeepy,

жаксы нотиже бтдрді.

MMometore lapham koltea
 найиыы жотар!
 pattone texhos
 (6) Hatilumanaca

	Окоуомияеский суд		
－		19 япиаря в 15.004.	
5	Apatseкий паионный сул	30 altapg в 15.094.	
6	Казапинскпй районньй суа	30 диваря a 15.004.	
7	Байконурекий торолской сул	23 января в 10.004.	
8	Кармакшиискнй районный су：	23 minapg в 15.004.	
\cdots	Жалагаиский райоиньй сул	23 яннаря в 10.00 ¢．	Cyma onтacmorocyat E Cuary
10	Сырларьинскнй раионньлй суд	23 яннаря в 15.004 ．	
15	［Јиелийскнй районньй суд	9 gilsiapa 10.001	
12	Жанакорпинскнй районньиі сул	9）яrıваря 15.004	

птор судсє по Кызылординской области объявляет о проведении торгов по продаже конфискованного имущества

 nин，（00）：

 ，Б．Б． If Nomomatici «Ypats Luth ho д

 псрююначат пии 1 ена－ 1676869 тен

中me no v．1．Emmafoenead， 11302

 рая нефгъ＇но д．Б．Мусаи́скова，Т，Жахзсва＇，25，（0）3 тонны，перыначалная 1ена－ 1364488 кенис，

Jив

 n1：27－43－24．

 и сколиозая помвоночннка даи лечения и профилакт ики к усяуа ам пиа－ ассейи в кі ми 心ксес массажом п лечсо́ной фиэкултурой．Дтя миние－
 द1 тия сиранк：23－51－50，23－51－96，23－52－78．

Кьзылординской обпвстной департамент аттомобиль－

 рона－Запацинліі Китай）．

Спушания етісонтся：

 27－68－62，26－25－41．

и установка гтутниковых и 犭фирных антенн．
 а кабелыног телевидения в гостиницах ：НТВ + ，Оион．Экспресс
ное обслижыкнние страхование Прошивка ресиверов п．Толе 6и，19．Іел．：27－74－01，8－700－429－65－91， 10－39．

（Dилиа：t коміннии aPM Lucas Enterprises ITB）．

верстана в комынытерном центре
 вести＂．

з а типогратышк＂Принт＂：г．Кызылорда， 1， 49.

，рекламы юиддикция ответственности не несет．

Мнения авторов не обизательно совладалот с точкой зрения газєты．
На прнсланнье письма редакция не отвечает，не рассылает их по инстанциям Рукописи не рецензируются и не возвращаются．
＊Платный материал
Газета зарегистрирована Министерством информации и общесгвенного согласия Республики Казахстан 13 января 1999 года．Регистрацнонный номер 548 －Г．
Газета выходит во вторник，среду，четверг и субботу
ТИРАЖ 7250
wastopal yout max hasi.

Ginimre деген киштарлык пен бойина яабітен енбекморлыкты Абайдіпда нститутта да дапепдеді. Мұны мен нэылордадағенедагогикапық институтта sып журіп, б.pде Таиқенттеп студент ерпестерімнін, Біріниі мамыр мерекесіне ирғанымда байтадым. Ол институтыы озат прят, инженер-тезно月ог деген мамандық ыып, жолдамамен Кызыпорда қапасынағы "Aвтотғактородеталь" зауытына ;женер-технопог болып орналасты.

тітен тапиы екені белилі, Мен үиін асып да ардақты достын бю - осы Эбекең. Соңғы 50 жнпдай өм!рде бір-бірімізге тек жақсылық кана тіпеп кепеміз, Әпдеқалай достықтың шаңырағын төмендетіп, болмаса жолдастықтың ндзік жібін бір сат босаңсытып алған емеспіз. Маған Әбекен сонау меклеп қабырғасындағы бала мінезімен. дара мінезімен қымбат та қастерлі. Қызметтің бик-биік дентейінде журіп. ось күнте деиін өэын туасы тектиліне кір

косағыдызбен oлn де асупарлан асвй тarдыір тарту еикен жасты жасап. ұриақ тарыңыздьң куаньiшы мен бақытин мопынан коре тусіңіздер демекпиз. Менін бул сөздеріме атын айты, түсін түстемей ақ мояиыын, жақын жора-жопдастардын барлығы да қосылатынына кумәнім жоқ Oпар да ыстық ықыпастдры мен адал пейпдерін 山ын жүректен ұсынады

Әбдіжалел БәКІР.

ҚЫПМЕАМ-БУЛТЫН UEWIPECI

 ата vрплқ тапы" шежіре-кітабы баспадан жарық кергелі жатыр. θ_{3} ата-тегіңізді, чрпағыңызды гүгендег, үыг еріп жаздырып калуға шақырамыз.

Мекетчийы Қызылорда қаласы, Абай данғылы 60, "Полиграфкж" баспа үйі. Теп: 23-74-73, 23-78-23, факс: 23-74-89.
(5-1).

DEPEEHITK, 3UHSH MTEHEHICATY TIE PMATY

*Катепко Ппюск, *НTB+* карточкалары "Oрион-Змспрессе арнаулы дилері Конақ үйлерге кабельдік тепевидениеперді орнату, кепіпдік қызмет жөне сақтандыру.

Мекен-жайы: Төле 6 п пецьсі, 19 үй. Teл: $27-74014$ чллн: 87004296591,8 7013315039 .

*АРАМСЫЗ ДЕП ЕСЕПТЕЛСІН

Капикбаева Жумагупь Аблаевнанын ать:на Цұғыла м 17 үй 64 пөтері жөнінде кадастрльқ нөмірі 10-156-002788 No0022223 жер учаскесіне жеке меншік құқығын беретін актиің жоғапуь!на баипанысты жарамсыз деп есептепсін.

Абубакирова Кулжамипа Ерхановнаның атына Тасбөгет қыстағы Аманкепді көा нeci 5 үй, 7 netep жөнाнде берилген техпаспорты жоғалуына байланысты жарамсыз деп есептепсін

Тураков Абддукаримның атына Кызылиорда каласы Жандосов көшеся 25 үй. 5 натер жөнінде берілген техпаспорты жиғалуына байланысты жарамсыз деп есептелсін.

ХАБАРААНДЫРУ

Кызынорда обылағык ав томобиль жоядары департаменгі мсн жооа азр лсушілер М-32 "СамараШымкент» (basme Eypona - Бatbc Kaтaй) abтомобиаь жолдарын канини кетгіру жобалык пешімдерінін корынаны ората ықmatm бағадау боиынma коғамдык тиедау никізелінін хабартайдп

Коғамщық тыңдаута коғампык үиымдар, мүдделі жске жоне sambs rymanap, collaй-ak бupion ниетті asamatrap kandea amath.

Коғамдык тындаулар:
2009 жыцдьы 16 кантары күні сагат 10.00 -де Жанакорған аудандык окімдігінде,

2009 жытдын 16 кантары күні сагат 15.00-дс ІІиелі аудандык әкімдіғінде

2009 жылыы! 17 каитары күні сагат 10.00 -де Кызылорда калалык әкімдігінле.

Kes keallo tybinatan
 мекенжайға хабарласа атасыздар: Кызьнорда каласы, Желтоксан көиесі, 18. Teл: 27-77-06, 27-68-62, 26-25-41.

REPORT

Public hearings on the assessment of the environmental impact by the project design during road reconstruction works, a section of the international transit corridor "West Europe-West China", financed by the World Bank.

In January, 2009 the employees of the "GeoData Plus" LLP, represented by Mr. Babalyk E. A., Deputy Director and Ms. Dzhunusova G. A., an Environment Specialist, participated in the public hearings devoted to the discussion of the Assessment of the Environmental Impact of the detailed design for the sections of the international transit corridor "West Europe-West China", financed by the World Bank.

The event was arranged by:

- Local executive agencies - Akimats of the Kyzylorda, Turkestan cities and villages of Temirlanovka, Shieli and Zhanakorgan;
- Territorial Roads Departments of the Roads Committee of the MTC in the Kyzylorda and South Kazakhstan oblasts;
- Designers- JSC "Institute of GeoProject", "KazNII PI Dortrans" LLP (Kazakh ScientificResearch Institute, Design Institute of Roads Transport), "Kazakhstan Zholdary" LLP, "Shymkent KazDorProject" LLP, and "Tabys-Otsenka" LLP
A notice on the planned public hearings has been published in the press:
- "Syr Boiy" newspaper, №5 (17578), January 09, 2009
- "Kyzylordinskiye vesti" newspaper, №4 (16.687), January 10, 2009;

Following groups of people have been invited to the Public Hearings:

- All local population, whose interests are likely to be affected during road reconstruction;
- NGOs working in the environmental and social areas;
- Representatives of the official authorities in the area of environmental designing and social issues.

Public Hearings were conducted in the following settlements:

Cities	Kyzylorda	17.01 .2009
Villages	Turkestan	15.01 .2009
	Shiyeli	16.01 .2009
	Zhanakorgan	16.01 .2009
	Temirianovka	15.01 .2009

98 local people participated in the Kyzylorda city hearings. During the event the local participants raised a number of issues concerning the project implementation period/duration, compensation amounts, pedestrian crossing (walkways) arrangement, green planting, and other issues. The audience has been satisfied both with the clarifications of the "GeoProject Institute" LLP provided in response to the questions raised, and with the Project as a whole. There were no comments or recommendations from the part of the participants in regards to the detailed design of the Section 1917-1837 km of the Route M-32.
125 locals attended the hearings in the Shiyeli village. The issues raised mainly related to the status of the road (free or paid), reconstruction of the irrigation systems, compensation amounts, availability of the cattle droves, arrangement of the local transportation, etc. The
participants were satisfied with the responses provided by the designers "GeoProject Institute" LLP, «KazNII PI Dortrans» LLP, as well as with the Project in general. No comments or recommendations have been received from the participants on the detailed design of the Section 1980-1917 km of the Route M-32.
The public hearing in Zhanakorgan village hosted 117 locals. The issues discussed during this event dealt with the archeological monuments, reconstruction of the engineering infrastructure, compensation amounts, availability of the cattle droves, and project implementation period, etc. There were two specific questions about future of burial places in Birlik and Ordakent settlements. The «KazNii PI Dortrans» LLP representatives assured local people that they included bypasses in the project which avoid any impact to those burial places.

The attendees were satisfied with the clarifications provided by the design institutes such as «GeoProject Institute» LLP, «KazNii PI Dortrans» LLP, and with the Project in general. No comments or recommendations have been received from the part of the participants in regards to the detailed design of the Section 2057-1980 km of the Route M-32.

83 persons participated in the hearings in Temirlanovka village. The local participants were very displeased with the proposed design of an elevated road (overpass) construction over the existing street in the village, and openly and vocally criticized the proposed design of the $2,3 \mathrm{~km}$ long overpass ("We don not want to live under a bridge!"). Questions asked and concerns raised related mainly to:

1. Road construction works:

- Local road transport arrangement;
- Ensuring traffic and pedestrian safety;
- Impacts of emissions, noise and vibrations;
- Impacts of the construction works on structural stability of existing residential buildings (especially during pile driving works);
- Overall arrangement of the construction areas (especially earthworks such as excavations for foundations), camps, workshops, storage and haulage in the geographical and social context of the village.

2. During road operation:

- Worsening of the aesthetical appearance of the village and a danger of losing cultural identity values (decrease in number of visitors in the existing museum);
- Proximity of the existing buildings to the overpass;
- Daylight and lighting issues;
- Continuous, long term impact of emissions, noise and vibration;
- Wastes generated/caused by the drivers of the transport moving on the overpass (discarded bottles, cans, cigarettes etc.);
- Maintenance of the overpass and the existing road remaining underneath;
- Ensuring safety (in case of road/car accidents and vehicles driving down from the road overpass);
- Impact of transport emissions, and whether there will be any control over the emission production and any measures to soften such effects.

On the issue of the Shymkent bypass the local population raised less concerns and agreed with the general provisions of the Project related to this Section.
During the public hearings in Temirlanovka village the residents of the village has brought the following additional issues to the attention of the local executive agencies (Akimat), the

Employer, represented by the Roads Committee of the MTC, and the designers, represented by "GeoProject Institute" LLP:

- Inadequate and untimely awareness of the local population of and involvement in the Project, especially during consideration of any alternative options for Temirlanovka in form of a bypass;
- Uncertainty in terms of managing and implementation of the land acquisition and compensation (cash or an equivalent land);
As result of the consultations the attendees strongly demanded from the designers to:
- Change the design by giving up the plans to construct the overpass over the central street of Temirlanovka village;
- Consider an alternative option for the route with involvement of the local population.

The Public Hearings in Turkestan city were attended by 39 residents of Ikan village and Turkestan city. The following issues were raised during the gathering:

- Concerns on compatibility of the proposed design with the Master Plan for the development of Turkestan city;
- Clarifications on project implementation period/schedule;
- Uncertainty in terms of managing and implementation of the land acquisition and compensation (cash or an equivalent land) activities;
- Effect of emissions, noise and vibration;
- Safety of pedestrians, especially children;
- Design of sufficient number and appropriate dimension for animal underpasses;
- Ensure minimal impacts on existing irrigation systems;

In general, the local population was satisfied with the responses to their questions provided by the representatives of «Shymken-Kazdorproject» LLP, "Tabys-Otsenka» LLP and with the Project, as a whole.

The local executive agencies (Akimat) actively participated in the discussions, mostly endorsing points made by the attendees and expressing strong interest in the Designers' changing the project design based on comments of the local population, such as:

- Increase the dimensions of the cattle droves, and change the profile (sections) from $2 \mathrm{~m}^{*} 2 \mathrm{~m}$ to $4 \mathrm{~m} * 2,5 \mathrm{~m}$;
- Envisage safe pedestrian crossings (ground or underground) in villages where no bypasses are planned.

To summarize all the hearings conducted in the settlements of Kyzylorda and South Kazakhstan oblasts, we may conclude that local population, in general, agrees with the main provisions of the road reconstruction project/design. However, based on their comments, and with the aim to minimize negative impact it is recommended:

At the design stage:

- For the Designers to elaborate an alternative option for construction of the overpass in Temirlanovka village and arrange public discussion of such an alternative with the local population;
- For the Designers to increase the quantity and dimensions of the cattle droves (underpasses) in rural areas where livestock breeding is an important economic activity, and have the design approved by the local administrations;
- For the Designers to envisage arrangement of the safe pedestrian crossings (ground or underground) in densely populated villages and agree the design with the local executive agencies.
At the construction stage
- The Roads Committee of the MTC should work out the issue related to explaining to the local executive agencies, and local population the process and mechanisms of land acquisition and compensation (monetary or land replacement).

Протокол общественных слушаний по оценке воздействий на окружающую среду решений рабочего проекта при реконструкции автомобильной дороги на участке 2057-2135 км трассы М-32 (г.Туркестан, п.Икан) международного транзитного коридора «Западная Европа - Западный Китай».

Дата проведения слушаний 15.01 .09 г., начало в 15 часов. Место проведения слушаний: актовый зал акимата г.Туркестан

Присутствовали:

1. Кенжеханов Е. О. - заместитель директора Южно-Казахстанского областного департамента Комитета автомобильных дорог (далее ОД КАД);
2. Сыздыков Б.Ш. - аким г.Туркестан;
3. Бабалык Е.А. - заместитель генерального директора ТОО «ГеоДата Плюс»
4. Джунусова Г.А. - к.т.н. главный эколог ТОО «ГеоДата Плюс»
5. Антонюк А.М. - инженер ТОО «Шымкент Каздорпроект»
6. Второв А.С. - ТОО «Табыс-Оценка»;
7. Жители с.Икан, г.Туркестан, заинтересованные лица, всего 39 человек.
8. Пребдставители Всемирного банка.

Председатель общественных слушаний Е.О.Кенжсханов, Секретарь Г.А.Джунусова.

На повестке дня:

«Общественные слушания по оценке воздействия на окружающую среду решений рабочего проекта при реконструкции автомобильной дороги на участке 2057-2135 км трассы М-32 (г.Туркестан, п.Икан) международного транзитного коридора «Западная Европа - Западный Китай».

1. Со вступительным словом выступил аким г.Туркестан Сыздыков Б.Ш.
2. Представил проект инженер ТОО «Шымкент Каздорпроект» Антонюк А.М.

Вопросы и замечания

Вопрос №l: По обе стороны существующего обезда все земли выкуплены, не в аренде, а выкуплены, почему не сделать обход города? Трасса нс должна заходить в горо и должна обходить все населенные пункты.
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): Я с вами согласен, но это вопрос не ко мне, эти вопросы к заказчику. Это не наша компетенция.

Вопрос №2: А кто заказчик? Нужно вначале с населением поговорить, а потом решать. Вы все решили и потом нам тут объясняете, как будет дорога проходить, сколько земли будет изыматься, сколько кому денег. Поймите вдоль дороги выкупленные земли, целевое назначение которых предпринимательство где магазины, где сервисы, где заправочные станции, это столько рабочих мест.
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): Разработано ТЭО, которое директивно определяет направление. Заказчик выдал техническое задание, согласно которому мы проектируем. Почему не решен вопрос обхода города Туркестан, это вопрос не по адресу, это вопрос нужно задать заказчику и вашим властям. Прежде чем проектировать, мы делаем все замеры. Если и попадают строения под дорогу, то в этих случаях будет выплачена компенсация.
Ответ (аким г. Туркестан Сыздыков Б.Ш.): Вы голословно так не заявляйте. Есть земельный комитет, гдс есть все чертежи. Мы следим за эти делом.

Bопрос №3: Вопрос к заказчику: почему не был решен вопрос обхода города Туркестан? Ответ (Кенжеханов Е. О. - заместитель директора Южно-Казахстанского ОД КАД): В свое время 2007 году, по заданию министерства транспорта и коммуникаций было разработано ТЭО дороги. Разработчиком ТЭО был ТОО «Каздорпроскт». Все решения ТЭО

министерство приняло. Сейчас все решения приняты из финансовых соображений. Поэтому обход г.Туркестана отложен пока, но он будет построен. Сейчас принято решение: существующий обход расширить и улучшить. Эта дорога останется городу, когда будет сделан новый обход.

Вопрос №4 (аким г. Туркестан Сыздыков Б.Ш.): Вопрос к земельному комитету, скажите сколько строений и каких попадает под снос, сколько зсмли?
Ответ (Начальник земельного комитета): Первое по аульному округу Сауран, там практически нет сноса, всего два земельных участка. В начале нам сказали: ширина зем полотна 70 метров и мы делали расчет по эти параметры. Теперь под постоянный отвод 27 метров и нигде никаких земель мы не изымаем. Те люди, которые находятся у края дороги уже договорились о компенсации. Только на повороте г.Кентау мы сносим два саманных забора и один проволочный забор. В остальных места сноса нет. Снос есть при обходе с.Икан, это обрабатываемые земли, население с.Икан знает, что получит такую же землю в другом месте. И по дороге, вы говорите нужно обойти город Туркестан, давайте будем использовать дорогу, которая уже есть. Дорога расширится, будут сделаны тротуары, освещение это для нас хорошо. Она не прямо по центру, нужно ее использовать. А по вопросам сноса, если будет изыматься земля, строения на ней, сносится деревья или даже туалет, вы получите компенсации. Нет поводов, для переживании по этому вопросу.

Вопрос № 5 Вопрос к проектировщику, дорога будет проходить по действующей объездной дороге, между развязками сколько километров?
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): Развязки всего в Туркестане в двухровнях две в начале поселения и где «ШНОСовская» заправка. А перекрестки Отабай, Бирлик и Кентау будут со светофорным регулированием.

Вопрос №6: Между Кентау и Бирлик сколько километров и между Берликом и Отабайским кольцом? Вы знаете сколько километров, вот Бирлик объединили в городскую территорию. Отсюда идет около 1000 детей с 6 до 18 лет в 20 -ю школу. Как дети будут переходить трассу?
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): А как в городе дети переходят улицу со светофорным регулированием? Есть пешеходный светофор. Везде есть тротуары с освещением и местные проезды. Пешеходные переходы предусмотрены на всех перекрестках.

Вопрос №7: Возможно ли организация более безопасного подземного перехода в черте густонассленных пунктов?
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): Устройство подземного перехода требует при изъятии дополнительных территорий под организацию спуска под земли, возможно даже снос существующих строений.

Вопрос №8 Будут ли ограждения вдоль трассы?
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): Сама трасса будет ограждена бетонными блоками высотой 0.75 м от местного проезда. Никакой транспорт лишний и пешеход не может иметь туда доступ.

Вопрос №9 Что касается экологических вопросов, на автотранспорте перевозятся киелоты, бензин, солярка и т.д. В пронлом году, мы сами видели, как 40 тонная цистерна перевернулась на автодороге и что было. Что предусматривается на эти случаи? И мне интересно, почему вы спрашиваете мнение народа, когда все уже согласовано и завершено? Существует утвержденный генплан развития Туркестана в роли историкокультурного центра Казахстана, там предусматривается два объезда один существующий, который вы реконструируете и второй за пределами города.
Ответ (Атнонюк А.M. - инженер ТОО «Шымкент Каздорпроект»): Я знаком с этим объездом длинной в 21 км, который полностью обходил г.Туркестан. Но это уже другая фаза развития проекта, возможно в будущем этот обход будет строиться, а сейчас мы

расширясм существующую дорогу. Которая в будущем, возможно, будет одной из центральных улиц города. Мы понимаем, что в будущсм нужно будет строить

Вопрос №9: В таком случае у нас вопрос о сносе сущсствующих строений. Некоторые уже получили уведомление, что их земли будут изыматься. Если как вы сказали дорога будет шириной 27 м, а у нас от оси существующей дороги до дома расстояние всего 15 м. Это что значит, от ворот до трассы останется расстояние всего в 1,5 м.
Ответ (аким г.Туркестана): Вы ссйчас говорите о выделенных для застройки территориях, а не о постройках. Если у Вас есть все документы на эти участки, то Вам будет выплачена компенсация в соответствии с законодательством и нормативами РК.

Мы просим все таки включить в протокол необходимость устройство дополнительных организованных пешеходных переходов - надземных или подземных в районе с.Бирлик.

Boпpoc №10:Есть ли у Вас скотопрогоны в промежутке между Иканом и Турксстаном? Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): Да предусмотрены.

Boпрос №l1: Я живу прямо около существующей дороги, у мепя 6 дстей, я не могу этот дом покинуть и построить себе дом в другом месте. У меня к вам просьба, можно какнибудь обойти мой дом, чтобы избежать его снос.
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): Не переживайте объездная дорога будет проходить в 6 м от вашего участка.
Ответ (аким г.Туркестана): Я рекомендую проектировщикам показать проект болес детально этой женцине, чтобы исключить ее сомнения по поводу изъятия участка.

Вопрос №12:Возле нашего села Шорнак будет проходить эта трасса, скот посем мы на другой стороне этой дороги, как мы будет теперь его перегонять?
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): В районе аула Шорнак нами предусмотрено устройство скотопрогона в двух местах типа труба. Там так же есть мост и сухой док, В этом месте такжс может производиться перегон скота. Доступ же скота на автостраду невозможен, так как по обе стороны трассы будут устроены защитные железобетонные ограждения.

Вопрос № 13: Что из себя будет представлять скотопрогон, сможем лишь через него скот прогонять?
Ответ (Атнопок А.М. - инженер ТОО «Шымкент Каздорпроект»): Да это будь железобетонная труба 2 на 2 метра.

Вопрос №14 (Аким г.Туркестана): Мы просим вас сделать эти скотопрогоны болышего размера, это возможно?
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроекг»): Самый большой скотопрогон, который мы можем запроектировать, будст иметь размеры 4 на 2,5 метра.

Вопрос №15: В районе Бирлика новая трасса вплотную подходит к существующим стросниям, как будет осуществлять подъезд к домам в этом случае?

Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): Напрямую с трассы вы нс сможсте попасть к дому, только путем съезда на местный просзда шириной $5,5 \mathrm{~m}$ на перекрестке. Также будет предусмотрен тротуар 1,75 м.

Вопрос Nol6: Так вы же сказали ширина дороги 27 м?
Ответ (Атнонюк А.M. - инженер ТОО «Шымкепт Каздорпроект»): Нет, по Туркестану предусматривается провести трассу без разделительной полосы. Только 4 полосы по 3,75 м и местный проезд.

Вопрос №17: В районе с.Ынтымак вы предусматриваете пешеходные надземные или подземные переходы.
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): В районе с.Ынтымак под землей проходит три подземных кабеля на глубине 0.8 метров. Если нам делать там подземный переход, значит все надо, будет демонтировать и перекладывать.
Аким г.Туркестана: Все равно надо учесть факт устройства пешеходного перехода наземного или подземного.

Вопрос №18: Мы все животноводы, почему у нас раньше не спрашивали рекомендации по поводу устройства скотопрогонов, мы видим уже готовые решения.
Ответ (аким г.Туркестан): В свое время всем акиматам сёл было дано задание провести на местном уровне собрания и выяснить эту информацию.

Вопрос №19: Как мы можем узнать о сроках строительства, когда начнется процедура изъятия, нам ведь надо подготовиться, скот куда-то персмсстить?
Ответ (Аким г.Туркестан): Все начнется 2010 году, мы вас заранее предупредим, и вы успеете рсшить вопрос с переездом.

Вопрос №20: Будут ли нам предоставлены равноценные изъятым землям участки, а не просто денежная компенсация?
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): Да обязательно, мы все предусматриваем.
Аким: Почему бы вам не предусмотреть объезд поселка Ынтымак, этим самым мы избежим многие проблемы.
Ответ (Атнонюк А.М. - инженер ТОО «Шымкент Каздорпроект»): Пожалуйста, но это предложение к заказчику. Мы руководствовались только техническим заданием заказчика и разработанным ранее ТЭО.

Вопрос №21: Каким образом будет происходить оценка, например недвижимости? Ответ (Второв А.С. - ТОО «Табыс-Оценка»): Оценка производится по рыночной стоимости на текущий момент. Определяется сколько стоит постройка и сколько стоит земля под ней.

Вопрос №22: Под текущим моментом вы имеет виду сегодня, так как вы включаете расчеты в проект, а что если на момент изъятия участки подорожают?
Ответ (Второв А.С. - ТОО «Табыс-Оценка): Да вы правы, возможно будет необходимо проиндексировать рассчитанную нами стоимость на момент заявки в момент изьятия.
Бабалык Е.А.: Я хотел бы добавить такой один момент. Каждый из вас получит оценку вашей собственности на руки и если вас эта оценка не устраивает, то ваше право подать заявку в независимую оценочную компанию, у которой есть лицензия для того, чтобы переоценить на тот момент стоимость вашего имущества. Далее по соглашению сторон вам выплатят ту сумму, которая была определена на момент изъятия. Но если у вас возникают все же разногласия, вы можете решить ваши разногласия в суде.

Аким г.Тукестана: Задание отделу архитектур: всех проинформировать подобно, где будет проходить дорога и пусть с этого момента на потенциально изымаемых территориях не ведут застройку. Если все же будут продолжать строить, то им не будет возмещаться ущерб.

Генри Ксралли, представитель Всемирного банка:

Мы удовлетворены вашей подготовкой и ведением этой встречи. Наша роль сводилась к наблюдению, не к участию. Я полагаю, что вы довольны тем, что местное население приняло активное участие, и мы с удовольствием ждем того момента, когда начнется строительство. Как вы отметили, что это может быть в 2009 или 2010 году. Мы надеемся, чем быстрее, тем лучше.

Аким: От лица всех участвовавших и своего имени, хочу поблагодарить организаторов этих слушаний за возможность выслушать мнение местного населения. Спасибо Вам большое!

Список участников общественнвх слупаний по итогам разработки PII оВOC по рсконструкции международного транзитного коридора＂Западная Европа－Западиый Китай＂
r．Tуркестан
15．01．2009r．

Nen／n	ФИО	Место работы	Ilomixg
4	Votennert 10	CH74	onboct
2	tevert ds		
2	Hegualed	C．bup euk	ctab
4	Cabunco A	a－tup enc	Ityo－
5	topreat M	Whoptomp ed	L 6
6	SQpueQ क	2laprat	O2，
7 \％		LTheption	$4 \square^{4}$
8	Hotoumercet 2	Achestaters，	1o adelt
9	Cennaple dr	－ $11-1$	bugy
18	Whecunctio	ACA－R	
4		㫙此－	0204
$1{ }^{2}$	Ecematan s．	$1 / \beta-1 /$	
13	Senocrenot C ．	$\frac{1 / 11}{} / 1 /$	
$t 4$	H60inarueb B ．	$11-1$	
75		$1 / 1 /$	ate
76	Hoppanucasurb o	／1－／1	
77		$1 / 11$	4
98	Acaur aeb del．	$11-11$	
79	Hoperswb G°	700－11	weat
20		4） 11	
97	Mrbuncmer A ．	1／－71	
22	Yupewerne vet．	CLST－k	－ 4.4
23	Aterneb 5 ．		${ }^{4}$
24	$A^{2}+00^{2} A$		17
25	blypecspuctucb 9	7－4 stoner．	
$\frac{2}{2}$	dyysatorat r．ier	y－d deyprtort．	volusiy
87		Th Suprater	$\cdots+1{ }^{2}$
$2{ }^{2} 6$	मुSpycasruper－	Eater loxat	uctas
29	cyndramer ${ }^{\circ}$	$11-11$	O2il
32	Sasaet C ．	11－11	c）5hent
91	Whepacaquoare－7tb D	Letgotera－gextick	－पerd
52	Qforerec 9 conot	电coptcori	－ 017
S3．	Rep ASM．＂PaCs＂	Cupnecrors	COLT
59		OARencter．	
	fopietserets．	vençacrei．	10^{23}
35.	Reppreb d．	Whert．	（16016）
36	lewecx ynab 2.	Leters	4
57.	Facanesb	chuetre．	HfHegtid
38.		blexay	－ 7

Список участников общественных слушаний по итогам разработки РП и ОВОС по реконструкции международногө транзитного коридора "Западная Европа-Западный Kитай"
r. Туркестан
15.01.2009г.

Протокол общественных слупаний по оценке воздействия на окружающую среду решений рабочего проекта при реконструкции автомобильной дороги на участке 2057-1980 км трассы М-32

 (пос. Жанакорган) международного транзитного коридора
3. Сердалиев К.С. - юрисконсульт Кызылординского областного Департамента Комитета автомобильных дорог;
4. Еламанов Бекмырза Кайюпович - Аким Жанакорганского района Кызылординской области;
5. Ыдырысов Сергожа Ыдырысович - заместитель Акима Жанакорганского района Кызылординской области;
6. Ањирбеков Зейнулла - начальник отдела градостроитепсства и архитектуры Жанакорганского района Кызылординской области;
7. Тлеубеков Б. - территориальныи инспектор - главный специалист АралоСырдарьинского Департамента экологии;
8. Бабалык Елбосын - заместитель генерального директора ТОО «ГЕОДАТА ПЛЮС»
9. Чжен Григорий Иннокентьевич - директор АО «Институт ГеоПроект»;
10. Пак Александр Викторович - заместитель директора АО «Институт ГеоПроект»;
11. Жидебаев Усен Тажибаевич - главный специапист отдела автодорог Управления пассажирского транспорта и автодорог Кызылординской области;
12. Буркитбаев Каржыбек Тажибаевич - руководитель аппарата Акима Жанакорганского района Кызылординской области;
13. Балтимбаев Болат Абенович - заместитель директора ТОО «КазНИИ ПИ Дортранс»
14. Ахметов Орман - начальник Жанакорганского районного отдела ЖКХ и пассажирского транспорта;
15. Куштаев Ерболат Серикович - главный специалист Кызылординского филиала РГП "Казавтодор"
16. Акпандет Руслан Саламатулы - линейный механик ДЭУ-51 Кызылординрского фнниала РГІІ «Казавтодор»
а, также все заинтересованные лица, всего \qquad человек. (Список прилагается)

На повестке дня:

«Общественные слушания по оценке воздействия на окружающую среду репений рабочего проекта при реконструкции автомобильной дороги на участке 2057-1980 км трассы М-32 (пос. Жанакорган) международного транзинного коридора «Западная Европа - Западный Китай»

1. Со вступительным словом выступил аким Жанакорганского района Кызылординской области Еламанов Б.К.;
2. Ознакомил присутствующих с целью проводимых общественных слушаний основными элементами рабочего проекта реконструкции автомобильной дороги международного транзитного коридора «Западная Европа - Западный Китай»

Мырзабай Ш.К. - заместитель начальника Кызылординского областного Департамента Комитета автомобильных дорог;
3. Представил рабочий проект реконструкции автомобильной дороги на участке 2057 1980 км трассы M-32 (пос. Жанакорган) международного транзитного коридора «Западная Европа - Западный Китай» с использованием слайдов - Балтимбаев Болат Абенович - заместитель директора ТОО «КазНИИ ПИ Дортранс»;
4. Далее выступил Бабалык Елбосын - заместитель генерального директора ТОО «ГЕОДАТА ПЛЮС» с разъяснением позиций Всемирного банка;
5. Представил рабочий проект реконструкции автомобильной дороги на участке 20571980 км трассы М-32 (пос. Жанакорган) международного транзитного коридора «Западная Европа - Западный Китай» с использованием слайдов представители АО «Институт ГеоПроект».

Вопрос № 1 (житель пос. Жанакорган - Сугирбаев А.) - Показать реконструкцию участка 2057-1980 км пос. Жанакорган ?
Ответ (заместитель директора ОД КАД Мырзабай ІІ.) - Показал на слайде участок 20571980 км трассы M-32 (пос.Жанакорган)

Водрос № 2 Есть захоронение в Бирлике, будет ли обход данного захоронения ?
Отвег: (заместитель директора ТОО «КазНИИ ПИ Дортранс» - Балғимбаев Б.) Обход данного захоронения будет и составляет 24 м.

Вомрос № 3 Будст ли выплачиваться компенсация за снос объектов?
Ответ: (заместитель директора ОД КАД Мырзабай МІ.) - Да, будет выплачиваться компенсация.
Bопрос № 4 На участке 2057-1980 км построили АЗС. Выло дано разрешение с земельного комитета, но не было согласование ОД КАД. Не имеется в руках документации, будет ли выплачиваться компенсация при сносе?

Отвег: (заместитель директора ОД КАД Мырзабай ІШ.) - При строительстве объектов по действующему законодательству РК вдоль трассы необходимо обязательно согласование ОД КАД. Всемирный банк следит за тем, чтобы все землепользователи, на которых оказввается воздействие получили компенсацию согласно оценке специалистов.

Bопрос № 5 (житель пос. Жанакорган - Кыстаубаева А.) - Будет ли заменен трубопровод при реконструкции дороги в ауле Сунаката?

Ответ (Чжен Г. - директор АО «Институт ГеоПроект») Да будет заменен.
Вопрос № 6 (индивидуальный предприниматель Сыздыков ШI.) - Не согласен с оценкой БТИ сносимого ему принадлежащего объекта?

Ответ: (заместитель директора ОД КАД Мырзабай ШI.) Нанимайте независимого эксперта и представьте свое заключение.
(заместитель генерального директора ТОО «ГеодатаПЛЮС» - Бабалык Е.) - Каждый землепользователь, который не согласен с оденкой, предоставленной ему, может заказать независимую оценку в пюбой оценочной компании, имеющей лицензию, а также решать все спорные вопросы в суде.

Bonpoc № 7 Будет ли снесено захоронение под населенным пунктом Ордакент ?
Ответ: (заместитель директора ОД КАД Мырзабай Ш.) - Нет, викаких захоронений не будет сносится при реконструкции транзитного коридора «Западная Европа-Западный Китай».

Вопрос № 8 В населенном пункте Суттикудык при реконструкции будет ли скотопрогон?
Ответ (заместитель директора ТОО «КазНИИ ПИ Дортранс» - Балгимбаев Б.) - Да проетом предусмотрены скотопрогоны, следующими размерами - ширина - 4м. высота 2,5m

Вопрос № 9 Когда начнется данная реконструкиия транзитного коридора «Западная Европа - Западный Китай?

Ответ: (заместитель директора ОД КАД Мырзабай Ш.) - Намечается во втором полугодии 2009 года.

После завершения дискуссих организаторы и ознакомили с рабочим проектом и даны соответствующие пояснения и ответы по всем интересующим вопросам. Также Аким Жанакорганского района Кызылординской области Еламанов Б.К. от населения Жанакорганского района Кызылординской области поблагодарил организаторов данного слушания за проведение и отметил, что организаторы слушания дали ответы ва все интересующие вопросы.

Председатель общественных слушаний Мырзабай ШІ.К.

Секретарь обмественньх слушаний Сердалиев К.С. - юрисконсульт Кызылординского областного Департамента Комитета автомобильньх дорог \qquad

Регистрация участников общественных слушаний по птогам разрабокки РП и ОВОС по реконструкции международиюго транзитного коридора «Западная Еврона－Западпый Китай» по участку 2057－1980 км трассы М 32

$\begin{gathered} \text { No } \\ \mathrm{n} / \mathrm{m} \end{gathered}$	Ф．и．о．	Контактный телефоі！	Род дептельности	Источник информацин о теме и месте проведения общественных смушаний
1		870／－117．51－47		Cuner
2	nogfob heveces rumowedn	1－701－491－5034		CMU
3.	Cfavieal Kacan	1－105：722 20.14		Cille
4.	IIII Meepuecot 5			cell
3	F－Resx 6			Celly
	そсces 「．\％			
7	hayperod 7 III	8－102－423．2100		culd
8	Kyumade ε c	$8 \cdot 705.3190350$		celll
9	Ahrouten P	8－701－140－56 13		Slut
				CMe1
11	uhataudé Arxayyu	9702 371－43 P3		yame Kny kent
12	Uloneareled M	1－701－61612－4		apen，coporion
13.	bepmareced 1	8－72435－91－1．51	Aluyukemei inatelui ozn	Tele
14	rejurael 5 i	1－7，435－92－001	rupeeporear Alyunucioro	＂M4
15	trnumersob．4．	$8 \mathrm{~m} /-36368-05$		clul
	baü 20 щct		cuceciad mygceparelo armpeut	cher
47	cypupreest	1701－298－07．21	Wroweight patnan	ckel
				celd
18.	Cyntoet C ．of	1722－358．28．46		Elu
	休ecrod 9 －	－72435－22．4．c6	Uow4 doutialiers	
	－queveread sp	2435－21－012	umber n ，Maccocipur	Elue
2	Kagindiect u．\＆	－72435－12．8．4	euchat．0．Elacirution	millue or ornas
32	turibe 6， $4 . \quad$ \＆	zol 7×10		mad．eoor ofth
23	Greanguat \＃ 8	A0－4 48.20	mquatigizumxañ poxivze，	
24	7eyperrecul y－	7． $7-459.33 .5$		mud lestats
	－			
25		$x /-5 / 3,2 \% 2$	usurecplo．apeor	
26	ATHizumual $7 . \quad 2$	20）$-102-014$	tgemioucer．sef	vent
22	Aprubrlaob－	－ $71-142-5413$	Reinepen	ern
2	Soy ectos	－ $32455-2 \cdot 4-35$	peifuscuesat	
29.	pppureel I．	224 35－22－1－46	yporsencear tagion	velut
$0 \cdot$	thewoque A		popameder	cull
$3!$	Sumuras	724	nemonext at Mecrecogewne	ciller
32	Hurreypeesa	24435－5＊87	wazaed 11 kasurfom	Celur
32	pual Ax	2y：r－ 53.37		$4{ }^{\text {a }}$ 2lu
31	qiucurenme			
－5	Cugnoue		weruls 0 \％clermenter	clur
36．	blcenarani			atry
！ 1	Tanciutsos			ulu）
38	Aluytecar 3.		$\cdots \mathrm{e}$	cere，

Список участников общественных слунаний по итогам разработки РП и ОВОС по рекоиструкиии международного транитного коридора «Западная Европа-Западный Китай» по участку 2057-1980 км трасеы М 32

Кызылордннская область пос. Жапакоргап
16.01 .2009 r .

Протокол общественных слушаний по оценке воздействия па окружающую среду решений рабочего проекта при реконструкиии
 Автомобиль жолаА(Б. Кызылорда) международного транзитного коридора «Западная Европа - Западный Китай»

2x 2 *омитеєета автомобильных дорог;
2. Лавров А.Н. - начальник отдела контроля качества и приемки работ Кызылординското областного Департамента Комитета автомобильных дорог
3. Сердапиев К.С. - юрисконсульт Кызылординского областного Департамента Комитета автьмобильных дорог;
4. Вабальнк Елболсьн - заместитель генерального директора ТОО «ГЕОДАТА ПЛЮС»
5. Чжен Григорий Иннокентьевич - директор АО «Институт ГеоПроект»;
6. Пак Александр Викторович - заместитель директора АО «Институт ГеоПроекп»;
7. Оспанов Г. - заместитель начальника Управления пассажирского транспорта и автодорог Кызылординской области;
8. Куштаев Ерболат Серикович - главный специалист Кызылординского филиала РГП «Казавтодор";
9. Джунусова Г.А. - к.т.н., главный эколог ТОО «ГеодатаПЛЮС»

а, также все заинтересованные лица, всего уу_ человек. (Список прилагается)

На повестке дня:

«Общественные слушания по оценке воздействия на окружающую среду решений рабочего проекта при реконструкции автомобильной дороги на участке 1917-1837 км трассы М-32 (г. Кызылорда) международного транзитного коридора «Западная Европа - Западный Китай»

1. Ознакомил присутствуюших с целью проводимых общественных слушаний основньми элементами рабочего проекта реконструкции автомобильной дороги международного транзитного коридора «Западная Европа - Западный Китай» Мырзабай Ш.К. - заместитель начальника Кызылординского областного Департамента Комитета автомобильньхх дорог;
2. Представил рабочий проект реконструкции автомобильной дороги на участке 1917-1837 км трассы М-32 (г. Кызылорда) международного транзитного коридора «Западная Европа - Западный Китай» с использованием слайдов Пак Александр Викторович - заместитель директора АО «Геопроект»;
3. Далее выступил Бабалык Елбосын - заместитель генерального директора ТОО «ГЕОДАТА ПЛЮС» с разъяснением позиций Всемирного банка;

Bопрос № 1 -- Будет ли обход населенных пунктов?
Ответ (заместитель директора ОД КАД Мырзабай Ш.) Да, проектом предусмотрены обходы всех населенных пунктов для безопасности движения

Вопрос № 2 - Будет ли строиться кемпинги?
Ответ: (заместитель директора ОД КАД Мырзабай Ш.) - Проектом предусмотрены кемпиинт, АЗС, кафе и т.д.

Вопрос № 3 Срок строительства данного проекта?
Ответ: (заместитель директора ОД КАД Мырзабай ШII) - Согласно проекта - 3,5 года.

Bonpoc No 4 Что будет со старой трассой?

Ответ (заместитель директора ОД КАД Мырзабай ІІ.) После ввода в эксплуатацию новой дорогн, старая дорога будет отдана на баланс местного бюджета.

Bопрос ㅇ. 5 Когда начнется данная реконструкция транзитного коридора «Западная Европа - Западный Китай?
Ответ: (заместитель директора ОД КАД Мырзабай Ш.) - Прогнозируется во втором попугодни 2009 года.

Bотрос № 6 - Будет ли взиматься плата за загрязнение окружагощей среды?
Ответ: (заместитель директора ОД КАД Мырзабай Ш.) - Да, плата будет взиматься.
Bопрос № 7 - КX «Канат» - Будет ли сносится отвод земли данного крестьянского хоэяйства?
Отеег: (заместитель директора АО «Инстиут ГеоПроект» Пак А.) - территория данного КХ согласно проекта входит под снос.

Вопрос Ng 8 Будут в проекте реконструкции зеленые насаждения?
Отнет: (заместитель директора ОД КАД Мырзабай Ш.) - Да, проектом предусмотрены уетройство зепеньх насаждений.

Вопрос № 9 Проектный институт АО «Институт ГеоПроект» адресные данные? Отвег: (заместитель директора ОД КАД Мырзабай Ш.) - АО «Институт ГеоПроект» находится в г. Кызыпорда, ул. Желтоксан, 18А.

Bопрос No 10 - Будет ли взиматься плата за проезд через автомобильную дорогу? Фтвет: (заместитепь директора ОД КАД Мырзабай Ш.) - Нет, плата не будет взиматъся.

Bопрос № 11 - Есть ли пешеходные переходы в мостах.
Оrвer: (заместитель директора ОД КАД Мњрзабай ІІІ.) - Да, проектом предусмотрены тротуары и пешеходы беспрепятственно могут проходить по новым мостам.

По окончанию общественньх слушаний все участники могли ознакомиться с рабочим проектом. Проектная компания АО «Институт Геопроект» ознакомила и ответила на все вопросы участнкков, слушаний о сле заверпения дискуссии организаторами были на карте, а также рабочем проекте показаны и даны соответствующие пояснения и ответы по всем интересуюшим вопросам участников данного слушания.

Секретарь общественных слушаний Сердалиев К.С. - юрисконсулют Кызылординского өблӑстного Департамента Комитета автомобильных дорог \qquad

Регистрация участников общественных слушаний по итогам разработки
РП в ОВОС по реконструкиин международиого транзитного корндора
«ападная Европа-Западинй Китай» по учаскку 1917-1837 км, обход г. Кызылорда участок $1837-1807$ км трассы М 32

$\begin{aligned} & \mathrm{NR} \\ & \mathrm{n} / \mathrm{n} \end{aligned}$	Ф.І.O.	Коттактный телефон	Род деятельности	Источиик миформамин о теме и месте проведения обцесввиных слушаний
12	+7nteb at		Quftern RAE.	Cllet
2	Mockmeb \quad.			celd
(3)	Hberpegmente a			(cele)
4				cickl
2)	Mrouktux		MPREXH2	Caxcl
E	popitrnaso ${ }^{\text {a }}$		\%ns	Gicid
a	kuvuspersextco		Gai	ceck
2	Aruestucos C.		ourepestincose dumancur	celer
j	Inctex cuecte 4		y :coppoce	celer
10	Ppicheserole ${ }^{\text {Pr }}$.		\%120/rice 1	cuer
11	lichot h		wapea.oy	asele
12	hecumanarer			Coter
13			escornedar I, liorgimoly	Gaccl
64	越的crueccots		"arepudorel	ciclet
6	asy, aceseut :		nepepundemect	culle
i,	CQtucesti I,		uprefolanedy	colet
17	kyuncedepre ?		m. noyobures	chery
18	ctherget		Shangelsmene	$r_{6}{ }^{1+1}$
4	Adwdi¢ 1		A hengilesumel	csuce
2				- 124
21	yumoter		ionnear i. Krumiop.	444
2	Avecjobe \angle		ani nopersporncer	ccecy
23			rorl	cexal
\therefore				Clea
			\cdots	

Список участников обществениых слушаний по итогам разработки РП п ОВОС по реконструкции междуиародиого траизитного коридора «Западная Европа-Западный Китай» по участку 1917-1837 км, обход г. Кызылорда участок 1837-1807 км трассы М 32

Кжъылордидская областв
r. Кызылорда
17.01.2009 r.

Протокол общественных слушаний по оценке воздействий на окружающую среду решений рабочего проекта при реконструкции автомобильной дороги на участке

2231-2260 км, обход г. ІІымкента, 2135-2231км трассы М-39 (с.Темирлановка) международного транзитного коридора «Западная Европа - Западный Китай».

Дата проведения слушаний 15.01 .09 г., в 11 часов Место проведения слушаний: актовый зал акимата с.Кордай

Присутствовали:

1. Кенжеханов Е.О. - заместитель директора Южно-Казахстанского областного департамента комитета автомобильных дорог (далсе ОД КАД);
2. Жуманов С. - Заместитель Акима Ордабасинского района по сельскому хозяйству
3. Пак А.В. - заместитель генерального директора АО «Институт Геопроект»;
4. Мунайдарова А.С. - исполнительный директор ТОО «Казахстан Жолдары»
5. Бабалык Е.А. - заместитель генерального директора ТОО «ГеоДата Плюс»;
6. Джунусова Г.А.- к.т.н., главный эколог ТОО «ГеоДата Плюс»;
7. Заинтересованные лица, всего 83 человека. (Список прилагается).
8. Представители Всемирного банка

Председатель общественных слушаний Кенжеханов Е.O., Секретарь Джунусова Г.А..

На повестке дня:

«Общественные слушания по оценке воздействий на окружаюшую среду решений рабочего проекта при реконструкции автомобильной дороги на участке 2231-2260 км, обход г.Шымкента, 2135-2231км трассы М-39 (с.Темирлановка) международного транзитного коридора «Западная Европа - Западный Китай».

Выступили:

1. Со вступительным словом выступил заместитель акима Ордабасинского района Жуманов С. Ознакомил присутствующих с цслью проводимых общественных слушаний проекта реконструкции автомобильной дороги международного транзитного коридора «Западная Европа -Западный Китай».
2. Представил рабочий проект реконструкции автомобильной дороги на участке 2135-2231км трассы М-39 (Ордабасинский) международного транзитного коридора, ГИП АО «Институт Геопроект» Пак А.B.

Вопросы и замечания

Вопрос №1: Нам, как простым людям, не понятно, что значит техническая категория дороги ІБ, разъясните, пожалуйста, какие у нее параметры?
Ответ (Пак А.В. ГИП АО «Институт Геопроскт»): Согласно технической спецификации категория дороги 1 Б, это дорога с четырех полосным движением общей шириной 27,5 м, каждая полоса имеет ширину $3,75 \mathrm{~m}$. Две полосы в одном направлении и двс в другом, между ними разделительная полоса шириной 5 m . Также будут устанавливаться барьерңые ограждения для исключения лобового столкновения.

Вопрос №2: Ширина навесной дороги сколько метров? Сколько метров от оси существующей дороги?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): 27 метров. Новая дорога будет над существующей от оси по 13,5 метров.

Bonpoc №3: Население интересует, коснется или не коснется эта дорога навесная существующей застройки? Дома не будут сноситься?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): Предварительно были проведены изыскания то, есть определены: метод прохождения трассы по Темирлановке. При строительстве путем расширения существующей дороги под снос попадали бы многие строения, поэтому было принято решение строительства эстакады, при которой все строения остаются внизу, не подвергаясь сносу. Дома нс будут сноситься.

Вопрос_№4: Подробнее, что из себя представляет эстакада? Шаг колонн, размеры колонн?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): Новое строение высотой 5,8 метров, будет опираться на сваи, «Т» образная конструкция. Колонны через 33 метра

Вопрос №5 (Предприниматель с.Темирлановка - Ораз Нурбол): В центре поселка находится двухэтажный магазин, то есть сго высота уже превышает высоту эстакады в 5,8 метров. Что будет с ним и другими зданиями? Вы это учитывали? Проблем никаких не будег?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): Эти здания не будут мешать, как при строительстве, так и при эксплуатации. Мы все учитывали, проблем не будет.

Вопрос №6 (житель п.Темирлановка - Болгенбай Калабай): Нельзя было спросить наше мнение до проектирования. Возможно было бы проще сделать объезд. А теперь сколько машин, сколько шума и мусора и все это на наши головы падать будет. Никто же не будет мыть колеса перед тем как выехать на эстакаду. Почему не спрашиваете мнение народа?
Комментарий (Заместитель акима ордабасинского района Жуманов С.): Сейчас речь не идет об изменении проекта в ту или другую сторону, рабочий проект уже завершен, зачем Вам все это? Лучше спрашивайте о том какие строения будут сноситься и какая компенсация будет выплачиваться?

Вопрос №7 (Собственник п.Темирлановка): Прямо в центре есть два двухэтажных дома высотой выше 6 метров, между ними 26 метров, вы говорите нужно 27 , как так получается?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): Наши топографы прошли весь участок, все замеры сделаны, никакие здания мы не задсваем.

Вопрос №8 (житель п.Темирлановка Иванюк Генадий): Опора имеет определенную ширину и она будет идти по центру дороги, правильно? Где будет наш местный транспорт проезжать? Значит будет расширение нижней старой дороги или нет?
Ответ (Пак А.B. ГИП АО «Институт Геопроект»): В пределах земельного полотна существующей дороги.

Вопрос №9 (житель с.Темирлановка): Вы сказали, что будет стоять колонна. Я сам строитель и разбираюсь, так просто колонну не поставишь, нужно будет рыть котлован под каждой колонной должна быть подушка, как эта конструкция будет влиять на соседствующие магазины и другие здания?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): Никаких воздействий не будет,так как колонна находится по центру дороги.

Вопрос №10 (Собственник с.Темирлановка): Вы колонны будете ставить и долбить будете или нет? Могут ли появиться трещины в стенах магазинов во время строительных работ?

Ответ (Пак А.В. ГИП АО «Институт Геопроект»): Будут буронабивные сваи, они устанавливаются не ударным методов, а постепенным давлением без сотрясения

Bопрос №ll: Где будет тротуар для пешеходов?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): С двух сторон существующей дороги по 1 метру шириной.

Вопрос №12: Если поставите по середине существующей дороги колонны, с двух сторон от колонн будут проезжать местные машины, то для пешеходов места не останется?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): Тротуары будут, это обязательное условие. От здания до здания порядка от $27-30$ метров, в этой полосе будет предусмотрем проезд для местного автотранспорта и пешеходные дорожки. Еще раз повторяю, что сноса не будет. Если снос был бы, то смысла в эстакаде не было бы.

Вопрос №13 (Собственник с.Темирлановка): Как будет организовано движение местного автотранпорта во время строительства? Ведь вы загородите центральную улицу.
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): Во время строительства будет задействованы паралелльные улицы и временные объезды, которые после строительства будут восстановлены.

Вопрос №14 (Елемесов житель с.Торткуль): Как будст трасса проходить по центру с.Торткуль?

Ответ (Пак А.В. ГИП АО «Институт Геопроект»): При прохождении по территории с.Торткуль трасса проектируется с такими же параметрами дороги, как в с.Темирлановка, снос зданий не предусматривается.

Вопрос №l5 (Житель с.Темирлановка Тореханов, живет вдоль трассы): Мы не получили внятного ответа. Вот существует дорога по центру Темирлановки. Возмите перекресток, он называется у нас центром. От этого центра в сторону Шымкента и в сторону Туркестана. Вы поставите эту «Т»-образную сваю по середине этой дороги. Вы уверены, что после установки этой эстакады движение останется таким же, у меня сомнения. Там нет такой ширины... Основание этой опоры каких параметров- ширина, высота и т.д.? Под ним пройдет трактор с сеном? Завести на камазе уголь сможем мы или нет? На эстакаду предполагается большая нагрузка, выдержит ли ее конструкция, не упадет ли эстакада? У нас близко подходят грунтовые воды, строительство эстакады не повлечет ли за собой подмыв соседних строений? Не поплывет ли наша больница, торговый центр? Где Вы предполагаете проведение паралелльных дорог? Я житель Темирлановки и не вижу ни одной паралелльной - объездной дороги. Нет такой дороги. Ответ (Пак А.В. ГИП АО «Институт Геопроект»): В центре эстакады пролет будет 63 метра - одна балка. С двух сторон от опоры остается по 5,5 метра дорожной полосы. Весь транзитный транпорт пойдет по верхней дороге. Нижней существующей дороги для нужд местного транпорта 5,5 метров с каждой стороны будет достаточно. Чистая высота эстакады 5,8 метров, этой высоты достаточно для прохождения автотранспорта.

Вопрос №16 (житель с.Темирлановка Болгенбай Калабай): Неужели строительство эстакады обойдется дешевле строительства объездной дороги?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): Строительство эстакады дешевле. Мы разрабатывали проект на основании ТЭО, которое было разработано в своем время.

Boпрос №l7 (житель с.Темирлановка Болгенбай Калабай): Наше село Темирлановка знает весь мир. Здесь у нас природа прекрасная, а Вы построить хотите эту эстакаду и сыпать мусор на головы людей.

Вопрос №18 (житель с. Темирлановка Жусупов Дуйсен): Вы будете использовать краны при установке колонн, а если оторвется тросс, рядом находятся дома, которые могут пострадать, об этом вы думали?
Ответ (Пак А.В. ГИП АО «Институт Геопроскт»): Будет соблюдатся техника безопасности. Это уже при производстве работ.

Вопрос №19 (житель с. Темирлановка): Вот ширина эстакады Вы сказали 27 метров, а наши дома не останутся в тени эстакады. Вы бы жили под мостом?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): От края эстакады минимум 5 метров до ближайших строений.

Вопрос №20: Предусмотрены ли ограждения на случай аварии, не упадут ли машины с моста? Рассчитаны ли ограждения на скорость 120 км/час?
Ответ (Пак А.В. ГИП АО «Институт Геопроект»): Ограждения предусмотрены, есть соотвествующие расчеты.

Bопрос №21: У меня вопрос к департамснту автодорог ЮКО. Вот как вы представляете жить под мостом? Хорошо вы сделаете шумоизоляцию, но такие тяжеловесные машины будут проезжать над тобой, будут вибрации.
3. Далее представила рабочий проект реконструкции автомобильной дороги на участке 2231-2260 км, обход г.Шымкента трассы М-39 международного транзитного коридора, исполнительный директор ТОО «Казахстан Жолдары» Мунайдарова A.C.

Вопрось и замечания

Bonpoc №1: Какая дорога будет от Шымкента до Темирлановки?
Ответ (ТОО «Казахстан Жолдары» Мунайдарова А.С.): Техническая характеристика дороги соответсвует категория $1 Б$.

Вопрос №2: Предполагается ли ремонт существующей дороги?
Ответ (TOO «Казахстан Жолдары» Мунайдарова А.С.): Будет проведена реконструкция существующей дороги, это не ремонт, а уширсние и доведение до параметров категории 1Б. Сейчас она на две полосы будет на четыре.
4. Выступил с пояснениями заместитель директора Южно-Казахстанского ОД КАД Кенжеханова Е.O.

Вопросы и замечания

Вопрос №1: Как будет проводиться процесс оцснки наших участков, и какая компенсация нас ожидает?
Ответ (Заместитель директора Южно-Казахстанского ОД КАД Кенжеханова Е.О.): Ссйчас ведутся работы по этому процессу подсчета стоимости выкупа и выдачи компенсаций, это не однодневная работа.

Вопрос №2: В Темирлановке живет около 10000 человек, как с экологической, санитарной точки зрения повлияет транзит, газы и выхлопы машин, пыль по эстакаде на местное население?

Ответ (Джунусова Г.А. главный эколог ТОО «ГеоДата Плюс»): В Казахстанском законодатсльстве придусмотрен расчет выбросов. В соотвествии с объемами взымается плата за выбросы. Однако в целом, так как эстакада находится на высоте 6 метров, а чем вышс источник выброса, тем меньше воздействие на людей, в связи с этим предполагается незназительное воздействие на атмосферный воздух поселка выхлопов транзитного автотранпорта.

Boпрос №3: Вы выйдите перед въездом в Темирлановку со стороны Шымкента есть мост через реку Арысь и полчаса постойте под мостом по которому проезжают машины. Весь народ Темирлановки здесь собрался, у нас тут музей и больница вдоль центральной улицы располагаются, над которыми вы говорите будет проходить эстакада. Что будет при гололеде под эстакадой с существующей дорогой не известно. Какая нибудь серьезная авария может привести к серьезным последствиям, надо сейчас решать вопрос о необходимости возведения этой эстакады. Нужно запретить строительство эстакады над существующей цснтральной дорогой в Темирлановке, надо предусматривать объездную дорогу! Никто не спрашивал мнение местного населения!!!

Вопрос №4: Наш музей Темирлановки является объсктом международного туризма. Изза эстакады потеряется фасад здания, люди перестанут приезжать в музей, кто возместит этот ущерб музею? Пусть тогда построять музей в другом месте на виду, чтобы его было видно с новой трассы, люди могли посещать его.

Вопрос №5: Как будет производиться оценка изымаемой земли? Например я владелец посевного поля?
Ответ (Тасбулатов А.К. оценщик компании ТОО «Страйк»): Как вы отметили у вас посевная земля, которую вы арендуете у государства. Например вы берете эту землю в аренду у государства на 49 лет или эта Ваша частная земля. Пять лет вы сй пользовались и на остаток срока 44 года рассчитывается прибыль на основе данных департамснта сельскогохозяйства вашего района, данные о вашей прибыли за пять лет эксплуатации, с каждого гектара посевной площади и умножается на 44 года. Что касается недвижимости, ссли ваша постройка законна, то компенсируются затраты на ее возведение все согласно законодательству и нормативам РК.

Выступил Булат Уткелов представитель Всемирного банка: Я представляю организацию Всемирный банк, которая , возможно, возьмется за финансирование строительства этой дороги. Я работаю в офисе Всемирного банка в Астане. Сюда сейчас приехали двое моих коллег - сотрудников офиса в Вашингтоне. Я воспользуюсь случаем и поблагодарю акимат, дорожный комитет, проектировщиков и всех, кто организовал эти общественные слушания за то, что пригласили нас сюда поучаствовать, посмотреть, как вы обсуждаете и технические вопросы ,и что в итоге принесет вам эта дорога. У нас, когда мы слушали вас, у меня например, возникло ощущение, что очень хорошие вопросы вы задасте о том, как на вас отразится строительство дороги конкретно. Хотелось бы услышать от проектировщиков этой дороги, что хорошего принесет эта дорога стране и вам конкретно. Так вот, я понял, что были вопросы по Темирлановке, по эстакаде. Да, действительно могут быть сложности, кроме всего хоротего и бутылки будут лететь, хотя будут организованы, как объяснили проектировщики, защитные ограждения. Как бы вы предложили провести эту дорогу, может быть не обход, а свои какие-то предложения, варианты, которые вы обсуждали между собой? Нам, как сотрудникам Всемирного банка, которые должны будут принять решение о финансировании всего того, что сейчас планируется, будет интересно узнать ваши предложения, если есть у вас такие варианты, пожалуйста, выскажитесь!

Комментарий из аудитории: Если банк будет учитывать наше мнение, то нам не нужна эта эстакада. 15 минут постойте под мостом и посмотрим какис у вас будут ощущения, а нам тут жить! Лучше объезд!
Стоимость проекта строительства эстакады и других рассмотренных вариантов так нам и не сказали. Дали один принятый вариант только и все!

Список учястников общественных слупанин по итогам разработки РП и OBOC по реконструкиии международного транзнтного коридора "Западная Европа-Западный Kитай ${ }^{\prime \prime}$
с. Темпрлан
15.01.2009r.

Список участников общественньх слушаний по итогам разработки РП и ОВОС по реконструкцпи международного траизитного коридора "Западная Европа-Западиый Kитак"

c. Темирлан

15.01.2009r.

Список участников общественных слупаний по итогам разработки РП и OBOC по рековструкции международного транзитного коридора "Западная Европа-Зашадный Kıтай"
c. Темирлан
15.01.2009 .

Протокол общественных слушаний по оценке воздействия на окружаюпую среду решений рабочего проекта при реконструкции автомобильной дороги на участке 1980-1917 км трассы М-32
 (пос. Шиели) международного транзитного коридора «Западная Европа - Западный Китай»

1. Мырзабай III.K. - заместитель начальника Кызмлординского областного Департамента

ㄴ Лавреө-A.H - наqалвник отдела контроля качества и приемки работ Кызыюордиского

жердалиев К.С. - юрисконсульт Кызыпординского областного Департамента Комитета автомобильных дорог;
2. Жагыббаров - заместитель Акима Іиелийского района Кызылординской области;
3. Аманжолов Г. - начальник отдела градостроительства и архитектуры Шиелийского района Кызылординской области;
4. Рахметов E. - территориальный инспектор - главный специалист АралоСырдарьинского Департамента экологии;
5. Бабапык Елболсын - заместитель генерального директора ТОО «ГЕОДАТА ПЈЮС»
6. Чжен Григорий Иннокентвевич - даректор АО «Институт ГеоПроект»;
7. Пак Александр Викторович - заместитель днректора АО «Институт ГеоПроект";
8. Жидебаев Усен Тажибаевич - главный специалист отдела автодорог Управления пассажирского транспорта и автодорог Кызылординской области;
9. Балгибаев Болат Абенович - заместитель директора ТОО «КазНИИ ТИ Дортранс»
10. Утеуов Д - директор Шиелийского районного ГУ по охране лесов и животного мира;
11. Куштаев Ерболат Серикович - главный специалист Кызюлординского филиала РГТ "Казавтодор";
12. Акпанпет Руслан Саламатулы - линейный механик ДЭУ-51 Кыэылординрского филиала РГП «Казавтодор»;
13. Слямшаихов Бекбау - инженер АО «КазДорНИИ»
а. также все заинтересованные лица, всего \qquad человек.(Список прилагается)

На повестке дня:

«общественные слушания по оценке воздействия на окружаюнуко среду решений рабочего проекта при реконструкщии автомобщльной дороги на участке 1980-1917 км трассы М-32 (пос. IИиели) международного транзнтного коридора «Западная Европа - Западный Китай»

1. Со вступительньым словом выступил заместитепs Акима Шиелийского района Кьзылординской области Жагыпбаров;
2. Ознакомил присутствующих с целью проводимвх общественньх слушаний основными элементами рабочего проекта реконструкции автомобильной дороги международного транзнтного коридора «Западная Европа - Западный Китай» Мырзабай Ш.К. - заместитель начальника Кызьшординского областного Департамента Комитета автомобильных дорог;
3. Представнл рабочий проект реконструкдии автомобилной доропи на участке 1980-1917 км трассы М-32 (пос. Циели) международного транзитного коридора «Западная Европа - Западньй Китай» с использованием слайдов Пак Александр Викторович - заместитель директора АО «Геопроект»;
4. Далее выступил Бабалык Елбосын - заместитель генерального даректора ТОО «ГЕОДАТА ПЛЮС» с разъяснением позиций Всемирного банка;
5. Представил рабочий проект реконструкции автомобильной дороги на участке 1980 1917 км трассы М-32 (пос. Шиели) международного транзитного коридора «Западная Европа - Западньй Китай» с использованием слайдов показали инженер АО «КазДорНИИ» Слямшаихов Бекбау.

Bопрос № 1 - Размер скотопрогона?
Ответ (Чжен Г. - директор АО «Институт ГеоПроект») Да, проектом предусмотрены скотопрогоны, следующими размерами - ширина - 4 м. высота $-2,5$ м

Вопрос № 2 - Количество скотопрогонов на данном участке?
Ответ: (Пак А. - заместитель директора АО «Институт ГеоПроекю») - Проектом предусмотрено 5 (пять) скотопрогонов.

Вопрос № 3 (Аманжолов Г. - Шиелийский районный архитектор - Что будет со всеми старыми каналами, трубами?
Ответ: (заместитель директора ОД КАД Мырзабай III.) - Все трубы, каналы будут реконструктированы

Вопрос № 4 Будут ли съезды по новому международному транзитному корндору «Западная Европа-Западный Китай» в населенннх пунктах?

Огвет (Слямшаихов Б. - инженер АО «КазДорНИИ») Съезды во всех населенных пунктах будут по новому международному транзитному коридору «Западная ЕвропаЗападный Китай».

Вопрос № 5 - Вудет ли взиматься плата за въезд с населенного пункта на данную трассу? Ответ: (заместитель директора ОД КАД Мырзабай ШI.) - Нет, плата не будет взиматься.

Вопрос № 6 Будут ли заменены трубы в а/о Алгабас?
Ответ: (заместитемь директора ОД КАД Мырзабай Ш.) - Да, все трубы будут заменены.
Вопрос № 7 В а/о Нартай будет ли выпачиваться компенсация при отводе земель реконструкции транзитного коридора «Западная Европа-Западный Китай»?

После завершения дискуссии организаторы ознакомили с дабенвшымромманыи даны соответствующие пояснения и ответы по всем интересующим вопрошыввиесте $¢$ тем

 отметил, что организаторы слушания дали ответы на все интересуђомме вопросы.

Председатель общественных слушаний Мырзабай ш.К.

Секретарь обпественных слушаний Сердалиев К.С. - юрисконсулқт Кызылординского обнастного Департамента Комитета автомобильных дорог

Регистрация участников обпествениьх слунаний по итогам раработки
PII и ОВОС по реконструкции международного транзитного коридора «Западнам Европа-Западный Китай» по участку 1980-1917 км трассы М 32

$\begin{aligned} & \overline{N Q} \\ & \mathrm{n} / \mathrm{n} \end{aligned}$	Ф.И.О.	Komтактный телефои	Роддеятелиости	Источник информации 0 теме и месте ироведешия обществепиых слушаний
1	Alpal ll	31065	Lountinat " $\langle 1 /$ - plehesono	celel
2.	Lieruel 7	$4.35-57$	İ 20 cruecor sfosecieac	Cuets
3.	Snday in 0	8729-303450		Cenc
4	nisucouct A	8105110.902	une lugrooir	ella
5		$50 \quad 3.40$	ALCes, +itiourd	illl
6	'10.4ky wiyln 4 .	$50-3 / 0$	adx-atar	nucblenci aman
7	Aives	1, 22, 32	Tisencul a/o acecer	Lesch rec or 08 kAO
p,	Browipeper w.	4-1232	wuened ofo pe-rates h	talue
2	Arpinvinec luol \%	4-4713	cuevectes ${ }^{\circ} \mathrm{poz}$	esulu
10	reycosced H	$4-35-64$		
11	larereel x.	$4 \cdot 35 \cdot 64$		celuel
12	Ses conb \dot{C}	$y-27.5 y$	xer-et?	
13	Arpussuca, ert	$32 \cdot 1 \cdot 54$	cuccer ofor inverrion	nycl leotog mx
$\underline{1}$	cupkenci 5 .			nuct 1000000100
15	14incenai ul.	27 121-111-51-43		
	Notpol H_{1}	6. $\mathrm{c}^{2} 1.481 .50$		
17	Gppodeol	$1-20508+8$		
12	Tleyteceul 5		haswedr M, bueereat	culd
12	5satecox			$\cdots 2121$
30	crectecoub 7π	2-702-413 21.00		- esel
-1	Hyutmeef 8 .	104-120-035		isuer
12	V112k A			celli
23.	for-merol is.			C 14
$\therefore 8$.	Anwelerdo.		in.incert, icteretis	celur
-4,	itajeazerob 3.		rucosep p_{17} careox abyyy.	\therefore Clcer
19	Stevjay erod δ.		20acmeste	C let
3.			2rectiodr a/0 Ahucien	celel
12	Neyelckucts		aramid of. Actand	- cuel
32	cprecoul		Arcomever of 0 Arectani	cuely
32	Coticoccoue et		Inermise $\%$ /o Aldes, <t)	ceisil
34	Ances rebe/ix'		inimaca o/2 Au:reczid	colct
35				cceld
$3:$	Pocitrent		ucherets ofe 6uriectep	ide.
年	Auciif		4oumeces i/0 /urexion	cowl
36	Tojpinax 6			a<lel
35	Cermuecrush		necerell $\% 0$ brareecern	ceidi,
40				Ceier
41	Higxobrajer			1. $2 \ll 1$
12				celer
45	Quxel 0^{5}			C.tece
7	7x-c土 it cicel			clu,

45	Mewens		2erepere co wfivent	(iluct
40	ill opeynujdeen		luchnecte of - 0 letict	icluy
22	deinaund i		keatonerds to kiander	ckel
40	Af whaverecob I,			clep
4	隹current			alat
4	2ctururent f		Socrnede of o zouturt	crer
S 1	Ecuachlo i		nuerurexes efo interpert	сıle,
5	Leocuerecmie ip.		hireverer no Ropricir	cilce
5	bucasent A			Wely
54	Aitimereol ${ }^{\text {a }}$: itig
65	Aupreet k,			$\therefore<4$
$\bigcirc 3$	cojurael ${ }^{\text {a }}$			4.48
0			munatecl ofo ackecelt	Colur
52	comuat $]$		becomide fo Aution	Clla
32	frathatcouc		Sumence e/0 fraceot	
i	F-2ayyedib		riceere.i efo , cipa al	- ${ }^{1+1}$
a	Davei ${ }^{\text {a }}$		Teucrmels do ionveremes	coper
	dicaucol			celer
			-	

Список участников общественных саушаний по втогам разработки РП и ОВОС по реконструкиин международиого транзитното коридора «Западная Еврона-Западный Китай» по участку 1980 - 1917 км трассы М 32

Кызылординская область
пос. ILиели
16.01.2009 r.

[^0]: 1 During project preparation so far two stages of public consultations were carried out. They were characterized by an open dialogue and constructive criticism and contributions by the public and thus considered a significant success.

[^1]: Rev A :12 1 December 2008February 2009

[^2]: ${ }^{2}$ After vocal disagreement during consultations with the local population the Design will be changed and instead of the overpass an alternative bypass route will be designed.

[^3]: исп.: Ермаганбетова А
 тел.: 230038

[^4]: нсп.: Eрмаганбетона A.
 тแル: 2.300338

[^5]: ${ }^{1}$ Байпаков К.М., Смагулов Е.А. Средневековый город Сауран.- Алматы, 2005.- 202 с.; Байпаков К.М. Средневековый Сауран // Города Туркестана.- Алматы, 1999.- С.83-97
 ${ }^{2}$ Смагулов Е., Григорьев Ф., Итенов А. Очерки по истории и археологии средневекового Туркестана.Алматы, 1999.- 232 с.

[^6]: ${ }^{\prime}$ Байпаков К.М., Подушкин А.Н. Памятники земледельческо-скотоводческой культуры Южного Казахстана (І тыс.н.э.). Алма-Ата, 1989. 160 с.; Байпаков К.М., Смагулов Е.А., Ержигитова А.А. Раннесредневековые некрополи Южного Казахстана.- Алматы, 2005.-236 с.

[^7]: ${ }^{1}$ Свод памятников истории и культуры Казахстана. Т.І. Южно-Казахстанская область. Алматы, 1994.C. 311

[^8]: Ермекбаева Г.Е
 гл.спец. ОГЗ3

[^9]:

[^10]:

[^11]:

[^12]: M¥MA
 9 хамтаи

